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CHAPTER 1INTRODUCTIONSequen
ing of 
DNA (
omplementary DNA) is in
uen
ed by an additive ran-dom pro
ess whi
h in
reases the potential for errors over DNA sequen
ing. In ad-dition, the pro
ess by whi
h 
DNA 
lones are sele
ted for sequen
ing introdu
es re-dundan
y. For these reasons, automated software tools are ne
essary to 
lassify largedata-sets of 
DNAs into groups that roughly 
orrespond to genes. Thus, a 
ru
ial toolneeded for this is a 
omputer appli
ation to form 
lusters based on sequen
e similar-ity from the raw 
DNA sequen
e data. This thesis presents the design and evolutionof a program that has been 
reated to a

omplish this task with the 
hara
teristi
sof 
exibility, eÆ
ien
y, and a

ura
y. Although there are several existing softwaretools [27℄ [20℄ [2℄ [21℄ available that perform geneti
 sequen
e 
lustering a

urately,this program is unique in its high degree of 
exibility and in its 
omputational ef-�
ien
y. Furthermore, the program is non-proprietary and may be freely obtainedfrom our proje
t web site (http://genome.uiowa.edu).An EST, or expressed sequen
e tag [1℄, is most generally a sequen
e obtainedby performing a single read of a random 
omplementary DNA (
DNA) 
lone. Aspe
i�
 type of EST sequen
ed from the 3' end of a 
DNA has the unique propertythat it is analogous to a �nger print { it 
an readily be used as a unique identi�er for



2a gene. Thus, high-throughput gene dis
overy proje
ts generate large numbers of 3'ESTs, in an e�ort to �nd new genes.Clustering is the pro
ess of partitioning a set of elements into meaningfulgroups (
lusters) so that members of ea
h group are more similar to ea
h other thanto members of any other group. In the 
ontext presented here, ESTs and otherforms of geneti
 sequen
e are the elements being 
lustered and 
luster membershipis determined based on sequen
e similarity. The ultimate goal is to partition theelements so that ea
h 
luster represents all known geneti
 information for a singlegene or gene family. The importan
e of this result bears on several aspe
ts, but theprin
iple of these is 
reating non-redundant indi
es of genes. These indi
es are anessential tool for assessing novelty rates and guiding future gene dis
overy e�orts.An additional important use of 
lustering is to identify EST sequen
es thathave a high potential of being derived from an alternative trans
ript of a known(or unknown) gene. A gene, as 
ontained in genomi
 DNA, 
an often en
ode theinformation ne
essary to produ
e multiple proteins. The genomi
 DNA is pro
essedby the 
ell into a messenger RNA (mRNA) trans
ript that in turn produ
es a protein.Sin
e ESTs are derived from post-spli
ed mRNA, they provide a 
onvenient way toidentify di�erent gene trans
ripts. Analysis of the 
onsisten
y of the sequen
es in a
luster 
an identify 
andidates that possibly represent alternative trans
ripts. Furthersequen
ing and genomi
 sequen
e data 
an then provide more thorough veri�
ation.A brute-for
e, exhaustive solution to the 
lustering problem is not, however,



3
omputationally feasible. An O(n2), where n is the number of sequen
es, 
omputationis required to identify all sequen
e similarities. This may be a suÆ
ient approa
h for100s or even a few 1000s of ESTs, but it 
annot possibly s
ale to data sets of millionsof ESTs. For data-sets of that size, heuristi
s must be employed to simplify the
omputation. The task is to simplify the 
omputation enough to be pra
ti
al whileretaining suÆ
ient a

ura
y to provide meaningful results.The 
lustering program dis
ussed in this thesis has been implemented andproven to a
hieve both a

ura
y and performan
e. It has been developed over the
ourse of four years and has had three major releases. Ea
h release has built uponthe prior by in
orporating new fun
tionality and in
reased performan
e. The �rstversion of the tool [26℄ was developed by Professor Thomas Casavant and releasedin Fall 1998. The two subsequent versions have been developed by Kevin Pedrettiunder the supervision of Professor Casavant. The robustness of this program has beendemonstrated by its daily use in the produ
tion pipeline of large-s
ale gene dis
overyproje
ts under way at the University of Iowa. Its use has resulted in the estimateddis
overy of more than 40,000 new genes in three mammalian spe
ies (human, mouse,and rat) [10℄.Chapter 2 provides the biologi
al ba
kground ne
essary to understand EST
lustering. Chapter 3 is 
omprised of a 
on
ise problem statement. Chapter 4 dis-
usses the high-level approa
h used in the three releases of the program. Chapter5 gives spe
i�
 implementation details of ea
h release. Chapter 6 presents results



4obtained by using the program in
luding a

ura
y and performan
e measurements.Finally, Chapter 7 
on
ludes with an outline of dire
tions for future development.The appendix lists the sour
e 
ode for the latest release, UICluster 3.0.



5
CHAPTER 2BACKGROUNDThis 
hapter will present the biologi
al ba
kground ne
essary to understandthe basis for expressed sequen
e tag (EST) sequen
ing [1℄ and why the 
lustering ofESTs is important. The last se
tion of the 
hapter will present a survey of other EST
lustering programs. 2.1 Biologi
al Ba
kground2.1.1 Gene Stru
tureCurrent de�nitions of genes are inadequate and ambiguous in des
ribing her-itable units of a genome. Here, a gene is de�ned as a well stru
tured and lo
alizedregion in the genome that en
odes the information ne
essary for produ
ing one ormore proteins. A gene is the basi
 unit of heredity, passing along traits su
h as eye
olor and diseases su
h as 
ysti
 �brosis. Having an extra gene, missing a gene, orhaving a mutated gene are some of the me
hanisms by whi
h geneti
 diseases 
anmanifest themselves. However, disease inheritan
e is 
ompli
ated and is not yet fullyunderstood. There are higher level intera
tions among genes and other stru
turesin the genome that play signi�
ant roles. Disease expression is also in
uen
ed bythe environment. Understanding every gene in the human genome is an anti
ipatedby-produ
t of the 
urrent sequen
ing e�orts, however this goal will take de
ades to



6a
hieve.The genome 
onsists of DNA, whi
h is the double-helix mole
ule lo
ated in
ell nu
lei. An organism's genome is lo
ated in the nu
lei
 DNA of ea
h of its 
ells.Figure 2.1 shows the stru
ture of a partial double-stranded region of DNA. Thedouble-helix stru
ture 
an be thought of as taking a ladder and twisting it. Ea
h rungis 
omposed of one purine base, adenine (A) or guanine (G), and one pyrimidine base,
ytosine (C) or thymine (T). Adenine ex
lusively pairs with thymine and guanineex
lusively pairs with 
ytosine. Ea
h rung in the double-helix stru
ture is 
ommonlyreferred to as a base pair (bp).

Figure 2.1: DNA Double Helix (adapted from [33℄)
The human genome is made up of 23 DNA mole
ules, 
alled 
hromosomes,
ontaining an estimated 3x109 base pairs. These 
hromosomes are 
urrently estimatedto 
ontain between 30,000{40,000 protein 
oding genes [17℄. An abstra
t view of agene's stru
ture is shown in �gure 2.2.A 
ell pro
esses this stru
ture by trans
ribing it (from the trans
ription start to
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Promoter

Transcription

Start

5’ UTR
Exon

Intron

3’ UTR

GCCGCCGCC   CCCTTCTCCAACAGGTGAGTGAGATG

CTCCCAGCCCTGCC

ATCCCCATGCC   GGGCCCCTTGA

GCAGAAACAATAAAACCA

Poly-A signal

Stop Codon

Acceptor site

Start codon Codons Donor site

Figure 2.2: Gene Stru
ture (adapted from [23℄)the Poly-A signal) into mRNA (messenger RNA), and then pro
essing the mRNA by
on
atenating the highlighted regions 
alled exons. The �nal produ
t represents theinformation ne
essary to synthesize a single protein mole
ule. The removed regions,represented in the �gure by thin lines are 
alled introns. A

eptor and donor sites,lo
ated in the introni
 regions and 
anking ea
h exon are the signals used by the
ellular ma
hinery to identify exon boundaries and aid in the 
on
atenation pro
ess.



82.1.2 Alternative Spli
ingCon
atenation appears to be a probabilisti
 pro
ess and exons are sometimesskipped by the 
ell's ma
hinery, being left out of the �nal mRNA produ
t. Thisphenomenon is a me
hanism by whi
h a single gene 
an be translated into multipletrans
ripts, ea
h 
oding for a di�erent protein. Approximately 30-40% of the genesin the human genome are thought to have multiple trans
ripts [17℄. Figure 2.3 showssome examples of alternative spli
ing.
Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

Exon 1 Exon 3Exon 2

A) Three exons spliced together

B) Exon 2 skipped

C) First portion of exon 2 skippedFigure 2.3: Alternative Spli
ing
2.1.3 Genome Sequen
ingGenome sequen
ing is the pro
ess of identifying the base pair sequen
e of every
hromosome in an organism's genome. The exa
t details of this pro
ess [24℄ are notimportant for understanding this thesis. However, it is important to understand the



9general nature of this pro
ess.Automated sequen
ing ma
hines have been developed to enable genome-level,high-throughput sequen
ing proje
ts to be feasible. These ma
hines 
arry out manysequen
ing rea
tions (a 
hemi
al rea
tion) in parallel. Current state-of-the-art te
h-nology allows for roughly 500-1000bp to be obtained in ea
h sequen
ing rea
tion.However, these rea
tions are error prone and tend to be
ome even more error-proneas sequen
ing lengths in
rease. There are three errors that 
an o

ur: bases 
an beinserted, deleted, or misread. Examples of these three events are shown in �gure 2.4.Sequen
ing errors sometimes o

ur in groups, su
h as a run of multiple bases beinginserted/deleted. Also, the error-rates at the beginning and end of a sequen
ing re-a
tion are relatively higher than the error rates in the middle of a rea
tion (e.g. the�rst 100bp and last 100bp of a rea
tion will have more errors).
True Sequence: TAGATTACAG

TAGAT ACAG-

TAGAT TACAGA

TAGAT ACAGA

Deleted Base:

Inserted Base:

Misread Base:Figure 2.4: Insertion, deletion and misread errors
For this reason, a given region of the genome must be sequen
ed many timesbefore a high-quality 
onsensus sequen
e 
an be formed. The 
urrent standard ofthe Human Genome Proje
t is to have ea
h base sequen
ed eight times (8x 
overage)



10before 
alling it �nished. 2.1.4 EST Sequen
ingAn EST (expressed sequen
e tag) is a spe
ial type of sequen
e that is usefulfor high-throughput gene dis
overy. Genome level sequen
ing produ
es the base pairsequen
e of an organism's genome but does nothing to identify where the genes arelo
ated. Sin
e less than 5% of the human genome 
odes for genes [17℄, identifying thegenes amounts to �nding a needle in a haysta
k. Gene predi
tion programs su
h asGens
an [7℄ and GRAIL [14℄ 
an be used to lo
ate and 
omputationally predi
t genestru
ture (where the exons are), however they are limited in their a

ura
y. EST se-quen
ing provides a short
ut to a

urately and eÆ
iently identifying genes dire
tly bysequen
ing the 
omplimentary DNA (
DNA). 
DNA has the introni
 regions removedand 
ontains only the 
on
atenated trans
ript of a gene.Figure 2.5 shows a high level overview of EST sequen
ing [1℄. To prepare forEST sequen
ing, mRNA mole
ules are extra
ted from 
ells and 
onverted into 
DNAthrough reverse trans
ription [5℄ [34℄. The 
DNAs are then 
loned into ve
tors, andele
troporated into ba
teria for growth, ampli�
ation, and storage. A 
olle
tion ofsu
h 
DNAs is refereed to as a library. Ea
h 
DNA library potentially 
ontains manyunique and previously undis
overed gene trans
ripts. However signi�
ant redundan
ywithin a library (multiple 
opies of the same 
DNA) and between libraries is normal.High throughput EST sequen
ing for gene dis
overy involves sequen
ing the3' untranslated region (UTR) of randomly 
hosen 
DNA trans
ripts from a 
DNA
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1) Genomic DNA (Chromosome)

Transcription

2) mRNA

Isolate mRNA

In Cell

In Tube

3) mRNA
3’5’

“Reverse Transcription” (Imperfect)

5’3’

3’5’

4) cDNA

5) EST SequencingFigure 2.5: High-level overview of EST sequen
inglibrary. The sequen
e is obtained by performing a single sequen
ing rea
tion, not themultiple rea
tions as dis
ussed in the previous se
tion. Empiri
al studies have shownthat the error rate for EST sequen
ing is approximately 5% for misread errors, and1-2% for insertion/deletion errors [6℄.The 3' UTR sequen
e is the most divergent [1℄, and thus the most usefulportion of a trans
ript for identi�
ation purposes. It is on average 750bp long. Theprobablility of another gene having the same 3' UTR is extremely low. The use ofa poly-T primer during reverse trans
ription allows for the preferential sele
tion of
DNAs with a poly-A tail at the 3' ends. The presen
e of this feature allows forsequen
ing to usually start from a known position (at the poly-A site).



122.1.5 EST ClusteringThe massive number of EST sequen
es generated by high-throughput genedis
overy proje
ts need to be 
lustered into groups based on sequen
e similarity.Ideally, ea
h 
luster will ex
lusively 
ontain all of the sequen
ed ESTs for a parti
ulargene. The results of doing this are used to assess the novelty rate of new sequen
esand provide feedba
k information to the sequen
ing pipeline. If the novelty ratesreported by 
lustering (roughly equal to the gene dis
overy rate) fall below a 
ertainthreshold, laboratory pro
edures 
an be performed to �lter out already sequen
edtrans
ripts from a 
DNA library [5℄.Comparing pairs of ESTs and looking for similarity is the basi
 operation to
lustering. This 
omparison is 
omplex be
ause of the single-pass nature of ESTsequen
ing. As was already mentioned, bases 
an be inserted, deleted, or misread.This means that some form of edit distan
e 
al
ulation is required to optimally derivethe similarity between two sequen
es.From the 
omputational perspe
tive, an EST is a 
hara
ter string made up ofletters from the alphabet A, C, T, G, X, N where A, C, T, and G represent DNAbases and X and N represent masked and ambiguous regions, respe
tively. A typi
alEST sequen
e is shown in �gure 2.6. Masked regions denote bases that have beenidenti�ed to be repetitive or 
ontain low 
omplexity. At least 45% of the humangenome 
onsists of repetitive elements [17℄. If masking were not performed, spurioussequen
e similarities would be found. Ambiguous regions denote bases that 
ould not



13be a

urately determined by the sequen
ing ma
hine or base 
alling program. Thereare examples of both of these types of regions in �gure 2.6. 3' ESTs are typi
allybetween 400{1000bp in length. This is a limitation of the 
urrent gene sequen
ingte
hnology and the lengths may grow larger in the future.
>UI-R-A0-ae-b-09-0-UI
TTTTTTTTTTTTTTTTTGATTTTCAATGATAAACTTTTATTCTGAATATACTGTTTTTGCACAAGATTTA
ACACAACATTTTCTGGGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCAAAATGTGTTCA
TCCGACTAGTTAATTTCCACAAAAGTGTCCAGAGAACATAATAAGGGGGAGAAAAAAAATCTGTTGTTCA
CAAAAGCCACTTGGCGTTTTGCTTGATGCACAATGAGCATTTCATGAAGAGAATCCCTAAAACATGATCC
CACAGTCATACCGCACAAGGAAAGAACAGCTTGGCCAGGTCACATTGGAAACTCAATTGGCATTTACACC
GGACAGCATGCCAGGAGTCTCAGTGGAATTTCCATGGTTCTTTTTTGTGTGAACTAGAAACAAGGTATAC
GAAACCTCCCGTAACAGCAATCTATTTCTGCAAAATTCTGGCCATTTTCATGACCTGATAGTTCTGTTTT
AGTGATTTGCTCTTTACAGAAATATACACCAGATAGTGACCATATCAACATTCTGCCATGGAGAACAATG
CAAGTTCCAGCGAATGATAAAATAAFigure 2.6: Example EST Sequen
e

2.2 Survey of Other EST Clustering ToolsThis se
tion brie
y dis
usses other EST 
lustering tools.2.2.1 NCBI UniGeneUniGene [27℄ is an experimental system used at the National Center for Biote
h-nology Information (NCBI) for automati
ally partitioning EST and other sequen
esinto non-redundant sets of gene-oriented 
lusters. Ideally, ea
h UniGene 
luster 
on-tains sequen
es that represent a unique gene, as well as related information su
h asthe tissue types in whi
h the gene has been expressed, and map lo
ation.The UniGene 
lustering pro
edure is broken down into multiple steps, withea
h stage adding less reliable data to the results of the pro
eeding stage. At ea
h



14stage, an essentially NxN sequen
e 
omparison is performed to generate a weightedgraph where the verti
es are sequen
es and the edges are weighted a

ording to se-quen
e similarity. Sequen
es with edges ex
eeding a threshold are merged into thesame 
luster. A detailed des
ription of the stages is given at(http://www.n
bi.nlm.nih.gov/UniGene/build.html).While the build pro
edure is publi
, the a
tual s
ripts and tools used are notreadily attainable nor are they 
exible enough to be used in an environment outsideof NCBI. In addition, it appears as if the pro
edure is started from the beginningea
h time the UniGene index is built. However, NCBI UniGene is probably the mostwidely used gene index and is one of the standards to whi
h our 
lustering pro
edurewill be 
ompared. 2.2.2 TIGR Gene IndexThe TIGR Human Gene Index [2℄ uses a stri
t assembly method to grouphighly related sequen
es into 
lusters. The method disregards in
onsistent mat
heswhen forming 
lusters in favor of 
on�den
e based on perfe
t or near perfe
t sequen
eoverlaps. This design 
hoi
e means that sequen
es possibly representing alternativespli
e forms will not be 
onsidered for 
luster membership. However, the bene�tis high 
on�den
e that the sequen
es in any given 
luster are truely related. Thedrawba
k is that under
lustering will o

ur (i.e. to many 
lusters) and the numberof genes will be over estimated.



152.2.3 ICAtoolsThe ICAtools [21℄ are a set of programs that are designed for doing mediums
ale 
DNA sequen
e 
lustering. The program inputs �les of 
DNA sequen
e infor-mation and produ
es an index �le whi
h links similar sequen
es together in 
lusters.ICA is an a
ronym for In
remental Clustering Algorithm whi
h des
ribes the waythe program builds its index one sequen
e at a time. The in
remental nature of theprogram is very desirable sin
e it eliminates the need to start from the beginningwhen only a few new sequen
es need to be 
lustered. The program also uses thenotion of small, exa
t mat
hes between sequen
es in a �ltering step before doing a
omparison. The default size for the exa
t mat
h length is six bases. Two sequen
esare only 
ompared if at least one of these short regions is in 
ommon between them.This saves by avoiding sequen
e 
omparisons, a time-
onsuming operation, that haveno 
han
e of being similar.The ICAtools are freely available from the Internet(http://www.hgmp.mr
.a
.uk/Registered/Option/i
atools.html).2.2.4 SANBI STACKThe STACK [20℄ 
lustering system aims to 
luster ESTs and full-length 
DNAsequen
es into high-quality 
lusters. The di�eren
e between STACK and UniGeneis that STACK attempts to generate 
onsensus sequen
es for ea
h 
luster using thephrap [13℄ program. These 
onsensus sequen
es 
an be used to dete
t alternativetrans
ripts of the same gene. Also, the developers 
laim that the STACK gene index



16is generated more 
arefully and has a greater degree of error 
he
king than UniGene.The d2 
luster [8℄ program is used to form what they des
ribe as a "loose" 
luster-ing based on the total number and multipli
ity of (possibly dis
ontiguous) mat
hing6-base words, rather than sequen
e alignment. The goal of loosely 
lustering is topreserve information about alternative spli
e forms. A post pro
essing step, per-formed by another program 
alled 
raw [9℄, is used to identify the possible multipletrans
ripts 
ontained in a 
luster. Their analysis [20℄ shows that their 
lustering isbetween 13{16% less fragmented than UniGene 
lusters. Fragmentation o

urs whentwo distin
t 
lusters exist that should a
tually be a single 
luster.The STACK tool is available freely for a
ademi
 use from the Internet(http://www.sanbi.a
.za/CODES).
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CHAPTER 3PROBLEM STATEMENTLarge-s
ale gene dis
overy proje
ts require rapid and a

urate 
lustering ofEST sequen
es for maximum eÆ
ien
y [11℄. Novelty rate estimates (i.e. the numberof 
lusters divided by the total number of ESTs sequen
ed) provided by 
lusteringare a key part of the feedba
k loop to a gene dis
overy sequen
ing pipeline. Thisinformation is used to de
ide when to perform serial-subtra
tions, whi
h have beenshown to dramati
ally in
rease novelty rates [5℄. High overall novelty rate is theprimary goal of these proje
ts. Furthermore, 
lustering results 
an provide valuableinsights into gene family relationships and 
lues to the identi�
ation of alternativespli
ing sites.These important uses of 
lustering make it imperative that the te
hnique 
ho-sen be both eÆ
ient and a

urate. If done in a naive fashion, su
h as a NxN 
om-parison, the problem is intra
table for any reasonably sized data set. On 
urrentPC hardware (e.g., 600MHz Pentium III), ben
hmarks have shown that a Smith-Waterman [29℄ 
omparison of two EST sequen
es requires on average 5 millise
onds.For a data set of 1 million ESTs, an O(n2) 
lustering would require approximately80 years. However, typi
al data sets will be highly redundant and the number of
lusters will be mu
h less than the number of sequen
es 
lustered. A better approa
h



18would be an algorithm that s
ales proportionately to the number of 
lusters. Su
han algorithm would still be O(n2) for the worst 
ase (i.e., every sequen
e is a 
luster)but would be mu
h faster in pra
ti
e. Clearly, there are signi�
ant opportunities toutilize heuristi
s and other optimization te
hniques to speed this 
omputation. How-ever, 
areful evaluation is ne
essary to be 
on�dent that the approximated 
lusteringresults mat
h as 
losely as possible the solution that would have resulted from anexhaustive approa
h.There are several existing EST 
lustering solutions in use at di�erent labsaround the world. Prin
iple among these are NCBI UniGene [27℄, ICATools [21℄,TIGR Human Gene Index [2℄, and SANBI STACK [20℄. These tools have alreadybeen dis
ussed brie
y in the previous 
hapter. While these tools are useful, theyare often not 
exible enough to be generally useful to outside laboratories. Thereis a need for a 
lustering program that 
ombines the strengths of these programs,but is 
exible enough to be useful in a wide-array of appli
ations and laboratoryenvironments. Furthermore, there is a need for a program that has higher performan
eand is more s
alable than the 
urrently available tools. Parallel exe
ution, distributingboth 
omputation and memory, along with improved heuristi
s, are methods that
ould be used to a
hieve this.The task of this thesis is to des
ribe the design and implementation of a high-performan
e, a

urate, and 
exible 
lustering software appli
ation. The algorithmsemployed have been 
hosen to optimize the trade-o� between performan
e and a

u-



19ra
y. Of parti
ular importan
e is the ability to handle large data sets (more than 1million ESTs) with reasonable 
omputation time on 
ommodity PC hardware. Fur-thermore, the appli
ation has been made 
exible by using 
arefully 
hosen run-timeparameters. A novel goal of the software pa
kage is to be easily adaptable to the
lustering needs of other proje
ts.
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CHAPTER 4APPROACHThe �rst se
tion of this 
hapter presents the fundamental approa
h we havetaken to the 
lustering problem. The important 
hara
teristi
s of our solution aredis
ussed from a high-level standpoint. The se
ond se
tion of the 
hapter dis
ussesthe optimization te
hniques we have employed in our solution.The 
lustering appli
ation that implements our approa
h has evolved over the
ourse of four years and has been released to the publi
 as three major versions. Ea
hsu

essive release has built upon the previous and implemented more of the detailsdis
ussed in this 
hapter. When ne
essary, a note will be made of what version of theappli
ation a parti
ular feature was �rst in
orporated.4.1 FundamentalsThe de�nition of a 
luster and the 
riteria for 
luster membership are funda-mental parameters that �rst need to be determined. NCBI UniGene [27℄, for example,de�nes a 
luster as 
ontaining all known geneti
 information for a given gene. Thisin
ludes alternative spli
e forms of a gene. Cluster membership is determined in amulti-stage, graph-based approa
h by whi
h 
lusters are formed based on sequen
esimilarity and known annotations. Essentially an NxN 
omparison is performed to
onstru
t a graph where edges between sequen
es are weighted with the similarity



21s
ore. SANBI STACK [20℄ takes a similar approa
h, �rst generating a graph of se-quen
e similarities. However, instead of using a traditional sequen
e alignment todetermine similarity, the 
riteria used is the multipli
ity and number of 6 base wordsin 
ommon between sequen
es. Both of these approa
hes are valid and useful. How-ever, we take a di�erent approa
h that avoids the O(n2) 
omparisons for typi
al datasets. The advantage is substantially improved performan
e enabling the ability to rune�e
tively on 
ommodity PC hardware. The risk is generating less a

urate results,although our analysis has shown this not to be the 
ase.Instead of pre-
omputing all sequen
e similarities before forming the 
lusters,we take a more dynami
, in
remental approa
h to the problem. Sequen
es are readone at a time from an input �le and 
ompared against one representative sequen
efrom every existing 
luster. These representative sequen
es are 
alled primaries.The non-primary sequen
es of a 
luster are 
alled se
ondaries. The sequen
e being
lustered is added to a 
luster if it is found to be similar to the 
luster's primary. Ifthe sequen
e is similar to no existing 
lusters, it be
omes the primary sequen
e of anew 
luster.As with existing 
lustering appli
ations, the 
omputation be
omes more 
om-plex as the data sets 
lustered grow larger. However, for our approa
h the 
om-putation s
ales proportionally to the number of 
lusters rather than the number ofsequen
es sin
e only the 
luster primaries are 
ompared against. This produ
es a largebene�t be
ause EST data sets typi
ally have signi�
ant redundan
y, meaning that



22the number of 
lusters will be mu
h lower than the number of sequen
es 
lustered.4.1.1 Program ParametersThis se
tion dis
usses the parameters and optional features of our approa
hthat are 
on�gurable by the user. These parameters a�ord the user a large degreeof 
exibility when performing a 
lustering. Di�erent option sets are appropriate forobtaining di�erent types of results. Additionally, the appli
ation 
an be exe
utedwith di�erent parameters several times for the same data set and the results 
an be
ompared.4.1.1.1 In
remental ClusteringA key feature that has been in
orporated sin
e the earliest version is the abil-ity to perform in
remental 
lustering. In this mode of operation, one or more �les
ontaining the results of previous 
lusterings 
an be input to the appli
ation andused when performing a new 
lustering. This is more eÆ
ient than repro
essing allof the data from the beginning as do the graph-based approa
hes of UniGene [27℄,STACK [20℄, and TIGR [2℄ gene index. Notably, ICAtools [21℄ provides similar in
re-mental 
lustering fun
tionality but requires that ea
h 
luster be stored in a separate�le. In addition, in
remental 
lustering allows other analyti
al pro
esses, su
h astra
king 
luster growth over time. Our approa
h is to allow ea
h �le to 
ontain morethan one 
luster, simplifying the administrative tasks of running the appli
ation.Previous output �les of our 
lustering program 
an be dire
tly input ba
k into the



23program when performing a new 
lustering. This feature 
an also be used as a 
rudeform of 
he
k-pointing by splitting a large data set up into pie
es and 
lustering ea
hpie
e in
rementally.4.1.1.2 Similarity CriteriaThe similarity 
riteria is spe
i�ed by the user as N out of M , meaning thatat least one mat
hing window of M bases with no more than M �N errors must bepresent for two sequen
es to be 
onsidered similar. If the number of errors permitted isrelatively modest (95% identity), this 
riteria 
an be evaluated more qui
kly than theoptimal (semi-optimal) alignment methods of UniGene, ICAtools, and TIGR GeneIndex. Still, evaluating this 
riteria is a time 
onsuming operation and should beavoided as mu
h as possible. This is the goal of our optimization s
hemes dis
ussedin se
tion 4.2.For estimating the number of genes represented in a data set, the N out ofM 
riteria should be 
hosen to allow for enough errors so that true similarities arenot missed while being rigorous enough that false similarities are not found. Un-fortunately, there is no pre-determined method to sele
t N and M and empiri
alinvestigations by expert biologists are ne
essary to determine whi
h values to use.However, one may wish to use the 
lustering appli
ation for purposes other than gen-erating gene indi
es. A "looser" 
lustering (under
lustering), similar to that produ
edby STACK [20℄, 
an be performed by allowing more errors when one is looking foreviden
e of alternative spli
e forms. Conversely, a "tight" 
lustering over
lustering)
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an be performed by allowing fewer or no errors. This is useful when one wishes tobe highly 
on�dent that members of a 
luster are related, with the 
onsequen
e ofmissing some true similarities. The stri
t alignment based 
lustering of TIGR's geneindex stri
t alignment based 
lustering is an example of this mode of operation.4.1.1.3 Repi
king PrimariesA potential drawba
k of the 
luster primary 
on
ept is that the 
hosen primarymay not be a good representative for the 
luster as a whole. For homogeneous 3' ESTdata, the best representative is most often the longest sequen
e in the 
luster sin
eea
h sequen
e theoreti
ally starts from the same position. However, by default ouralgorithm uses the �rst dis
overed member of a 
luster as the primary, disregardinglonger sequen
es that are added to the 
luster later. This works well as long as theinput sequen
es are all approximately the same size or if they are pre-sorted intodes
ending order by size. Sin
e this is usually not the 
ase, an option is availableto repi
k the primary every time a sequen
e is added to the 
luster. If the sequen
ebeing added is longer than the existing primary, it be
omes the new primary for the
luster. In su
h a 
ase, all of the existing se
ondaries are 
ompared against the newprimary. Sequen
es not mat
hing the new primary, 
alled orphans, are made note ofin the appli
ation's output. Over time, orphan sequen
es 
an be re-adopted as newprimaries are pi
ked. At the end of 
lustering, any remaining orphans are intendedto be examined by a human.



254.1.1.4 Virtual PrimariesAs a more extensive attempt to address the limitations of the 
luster primary
on
ept, the latest version of the program 
ontains an option to generate a virtualprimary for ea
h 
luster. Every time a sequen
e is added to a 
luster, a 
he
k isperformed to see if the virtual primary 
an be extended. There are �ve possible
ases that are 
onsidered: an internal hit, front extension, tail extension, tail andfront extension, and no extension. An internal hit is when the added se
ondary is
ompletely 
ontained in the virtual primary. An extension o

urs when the addedse
ondary 
an make the virtual primary longer at its front, tail, or both. For this too

ur, there 
an be no non-mat
hing regions (taking into a

ount some error) of theoverlap between the virtual primary and se
ondary. If there are non-mat
hing regions,then the sequen
e is added to the 
luster but the virtual primary is not 
hanged. Thesequen
e should be inspe
ted later to determine the 
ause of the non-
onsistent hit.Su
h sequen
es may be good 
andidates for representing an alternative trans
ript ofthe gene the 
luster represents.If the virtual primary parameter is enabled, all sequen
e 
omparisons are per-formed against the virtual primary instead of the primary. However, the 
lusterprimary is also maintained and updated to re
e
t the longest sequen
e in the 
lusterif the repi
k primary parameter is enabled.



264.1.1.5 Reverse Complement Che
kingA rare error that o

urs when doing EST sequen
ing is that the opposite strandof a 
DNA trans
ript is sequen
ed in the wrong dire
tion. It is ne
essary to reverse
omplement su
h a sequen
e before it 
an be 
ompared to other sequen
es that weresequen
ed in the 
orre
t orientation. To identify these errors, an optional parameterwas added to the se
ond version of the program that 
he
ks the reverse 
omplimentof an input sequen
e if no mat
h to a 
luster primary is found in its original form.An additional important use of this feature is for 
lustering 5' EST and full-length 
DNA sequen
es along with 3' ESTs. These types of sequen
es must be reverse
omplimented before any overlaps with 3' EST sequen
es 
an be ruled out.The performan
e impli
ation of this feature is that the 
omputation time maydouble, sin
e the 
luster spa
e is potentially sear
hed twi
e. In pra
ti
e, the penaltyis not this severe sin
e a reverse 
ompliment mat
h is a relatively rare o

urren
e.4.1.1.6 Extended Sear
hA parameter that was added in the se
ond version of our 
lustering appli
ationis the ability to do an extended sear
h of the 
luster primaries for ea
h sequen
e being
lustered. By default, a sequen
e being 
lustered is greedily added to the �rst 
lusterprimary that it is found to mat
h. Enabling this parameters makes the sear
h ofthe 
luster primaries exhaustive. If any mat
hes are found, the sequen
e is added tothe 
luster with the best mat
hing 
luster primary and all other mat
hes are noted



27in an output �le. This feature 
an be useful for identifying potential alternativetrans
ripts. Two separate 
lusters that are linked together by multiple sequen
eshave a high potential of either being alternative trans
ripts of the same gene ormembers of the same gene family. Alternatively, the linking sequen
es 
ould be
himeri
{\false" sequen
es 
ontaining partial regions of separate trans
ripts 
ausedby library 
onstru
tion errors. Human inspe
tion of su
h 
ases is ne
essary to resolveany ambiguity.The number of sequen
e 
omparisons required when performing an extendedsear
h is potentially mu
h greater than performing the greedy sear
h. However, theglobal hash table dis
ussed in se
tion 4.2.2 is e�e
tive in �ltering the sear
h spa
e byeliminating primaries that 
an not possibly meet the similarity 
riteria. This lessensthe overhead substantially.4.1.2 Organization of OutputsThe main output of applying our 
lustering approa
h to a set of sequen
es isa �le 
ontaining the identi�ed 
lusters. This �le 
ontains both the sequen
e data and
luster hierar
hy. Depending on the parameters 
hosen, other �les are also output.There is a \reje
t" �le that 
ontains sequen
es that have been identi�ed to be toolow quality to 
luster. There is an \orphan" �le that lists orphaned sequen
es if therepi
k primary option is enabled. The \hits" �le lists all of the 
luster primaries hitfor ea
h sequen
e 
lustered if the extended sear
h option has been enabled. Finally,there is an output �le written for ea
h 
luster �le input into the appli
ation when



28performing an in
remental 
lustering.4.2 OptimizationA unique aspe
t of our appli
ation is its adaptability to the 
omputing hard-ware that is being used to run it. A drawba
k of the NxN 
omparison methodsemployed by STACK and UniGene is that high-end 
omputers are required for run-ning them. The d2 
luster [8℄ appli
ation used by STACK was originally designedto run on a MasPar super-
omputer, and has re
ently been ported to other platformsin
luding SGI Origin2000 and Linux PC 
lusters. They report that a 126 CPU SGIOrigin2000 is used for building the STACK gene indi
es [20℄. Our hash optimiza-tion s
hemes allow the user to intelligently balan
e the amount of memory used and
omputation time required by 
on�guring run-time parameters appropriately. Theprogram is able to run eÆ
iently on 
ommodity hardware with modest amounts ofmemory. In addition, multiple pro
essors 
an be taken advantage of to distribute thememory and 
omputational requirements of 
lustering if required.4.2.1 HashingA key optimization of our sequen
e 
omparison fun
tions is to initially sear
hfor short, exa
t mat
hes by looking for hashes in 
ommon between the input sequen
eand the 
luster primaries. A hash is an integer that uniquely represents a string ofbases. The length of the string of bases to use, �, is spe
i�able by the user at run-time.For example, the length � = 8 string of bases fGCCACTTGg may be represented bythe integer 48406. A sequen
e is hashed by generating a unique integer for every length



29� window of the sequen
e. The hashing optimization is based on the prin
iple that it isfaster to 
ompare integers than to perform a string 
omparison. Integer 
omparisonsare primitive operations implemented in hardware for every modern CPU, while string
omparisons are usually implemented as library 
alls. In addition, hashes only needto be generated on
e for ea
h sequen
e but are used many times. This amortizesthe 
ost of generating the hashes over the program's exe
ution. The trade-o� is thatmemory usage in
reases be
ause the hash lists for ea
h 
luster primary need to bestored in memory. Memory usage will s
ale proportional to the total number of bases
ontained in the 
luster primaries, sin
e a hash needs to be stored for ea
h baseposition.When performing a sequen
e 
omparison, both sequen
es are �rst hashed.Next, identi
al hashes between the two sequen
es are lo
ated. The base regions ofthe two sequen
es 
orresponding to the mat
hing hash are a potential seed for alonger mat
h, hopefully meeting the N out of M similarity 
riteria set by the user.At this point, a more exhaustive sear
h is performed, taking into a

ount errors. Ifthe similarity 
riteria is not met in this 
omparison, the pro
edure moves onto thenext hash in 
ommon between the two sequen
es and examines it. This pro
edure
ontinues until a mat
h is found or all identi
al hashes have been examined anddis
arded.



304.2.2 Global Hash TableThe GHT uses hashes to optimize the program at a higher level by �lteringthe entire sear
h spa
e into a subset of high-potential 
andidate primaries. The table
ontains an entry for ea
h possible hash value. At ea
h entry, there is a list of 
lustersthat 
ontain at least one o

urren
e of the entry's asso
iated hash. When a sequen
eis 
lustered, it is hashed in the same way as des
ribed earlier. However, instead of
omparing it is hashes against every primary, the GHT is traversed. Only primariesthat are found by inspe
ting the GHT are examined. Primaries not having any hashesin 
ommon with the sequen
e being 
lustered are not examined.A further re�nement of the GHT 
on
ept is to keep a tou
h 
ount for ea
hprimary in the table. Ea
h time the primary is "tou
hed", meaning it has a hash in
ommon with the sequen
e being 
lustered, this 
ounter is in
remented. A 
omparisonis only performed if the tou
h 
ount is in
remented to be
ome greater than a thresholdthat is set by the user at run-time. If the threshold is 
hosen too high, then someprimaries meeting the user'sN out ofM similarity 
riteria may be missed. Similarly, ifthe tou
h 
ount is 
hosen too low, more 
omparisons than ne
essary will be performedand performan
e may de
rease dramati
ally.4.2.3 Parallel Exe
utionThe latest version of the 
lustering program has been parallelized to splitup the 
omputational and memory requirements a
ross several 
omputers (
omputenodes). The main reason for doing this is so the program 
an s
ale to larger problem



31sizes without being 
onstrained by the memory limitations of a single 
omputer. Thein
reased performan
e is an added bene�t.In this mode of exe
ution, ea
h 
luster is stored on exa
tly one 
ompute node.A given sequen
e is read in from the input �le and pro
essed in parallel on ea
h
ompute node. This results in a parallel sear
h of the 
luster spa
e. On
e ea
h nodehas �nished its sear
h, ea
h node's best mat
h is 
olle
tively 
ommuni
ated to all
ompute nodes. The node with the best mat
h stores the sequen
e in its memoryspa
e. If no mat
h is found on any of the 
ompute nodes, the input sequen
e be
omesa new 
luster and is assigned to one of the 
ompute nodes. Clusters are balan
edevenly a
ross the 
ompute nodes.If the extended sear
h option is enabled, an additional 
ommuni
ation is per-formed to build a list of all mat
hes meeting the user's similarity 
riteria. This listis gathered to the master 
ompute node (the node writing the output �les) and iswritten to a �le.



32
CHAPTER 5IMPLEMENTATIONThis 
hapter presents implementation details of the three generations of the
lustering appli
ations that have been developed to date. The �rst version of theprogram, TL
luster 1.0 was implemented by Professor Thomas Casavant in the Fallof 1998. This version was revised and expanded to produ
e the two subsequent majorreleases of the appli
ation, UI
luster 2.0 and UI
luster 3.0. In this 
hapter,UI
luster will be used to 
olle
tively refer to all three of the implementations.5.1 Common Implementation DetailsCommon 
hara
teristi
s of all versions of UI
luster in
lude the high-levelsolution stru
ture, the hashing algorithm, and the the sequen
e 
omparison fun
-tions. These topi
s will be dis
ussed in this se
tion and further elaborated on in thesubsequent se
tions that spe
i�
ally deal with ea
h implementation version.An additional implementation 
ommonality is that ea
h version has been writ-ten in the C programming language [18℄ and is intended to be run using a UNIX-based [32℄ [30℄ operating system. Appendix A lists the 
omplete sour
e 
ode of thelatest release (roughly 5; 500 lines). Portions of this 
ode will be referred to throughoutthis 
hapter. The UNIX-derived Linux operating system has been used for develop-ment and testing of ea
h version. However, an e�ort has been made to make the
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ations as UNIX platform independent as possible.5.1.1 High Level Solution Stru
tureThe basi
 
ow of data is the same for all versions of UI
luster and is shownin �gure 5.1. Two data sour
es are input into the appli
ation. The �rst is a �le (or�les) 
ontaining 
lusters formed by previous runs of the program. These 
lusters areonly input when performing an in
remental 
lustering. The se
ond data sour
e is a�le 
ontaining the sequen
es to be 
lustered. This �le is formatted in the 
ommonlyused multiple FastA �le format [12℄. Figure 2.6 is an example of a FastA formattedsequen
e. The �rst line of a FastA sequen
e always begins with a \greater than" signand is followed by the sequen
e name and other information. The sequen
e is listedafter this line, and in
ludes all lines up until the next FastA sequen
e re
ord.
Existing

Clusters

New

Sequences

UIcluster

New

Clusters
Augmented

Existing Clusters

Rejected

Sequences

Other Outputs

(Orphans, Hits, etc.)Figure 5.1: High Level Data Flow
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remental 
lustering, the 
lusters that are input intothe program are pro
essed and loaded into memory before any new sequen
es are
lustered. New sequen
es are 
ompared against these 
lusters in addition to anynew 
lusters that are formed by the new sequen
es themselves. If a sequen
e being
lustered is found to belong to one of the previously existing 
lusters, it be
omes amember of that 
luster.On
e the program has �nished running, the 
lusters that have been identi�edare output to �le. One �le is output that 
ontains all of the new 
lusters that wereformed from 
lustering the input sequen
es. The sequen
es in this �le were not ableto be added to the previously existing 
lusters that were input into the appli
ation.If there were �les input to the program that 
ontained 
lusters to be used for in
re-mental 
lustering, a new �le is output for ea
h of the �les 
ontaining the modi�ed
lusters (i.e., possibly having sequen
es from the input set added to them). Thisbehavior is very useful for tra
king the growth of existing 
lusters of interest. Ad-ditionally, input sequen
es not meeting the user's minimum sequen
e length 
riteria(i.e., reje
ted sequen
es) are output to the reje
t �le. Multiple other �les are alsooutput depending on whi
h options the user has 
hosen to enable (e.g., a �le listingall of the primaries mat
hed, or \hit", for ea
h input sequen
e when the extendedsear
h option is enabled).In addition to the data-
ow, the same basi
 
ow of exe
ution is used for ea
himplementation. This 
ow is shown in �gure 5.2. Step 4 en
ompasses the bulk



35of the program's exe
ution. Sequen
es are read one at a time from the input �leand 
lustered. If a sequen
e is determined to be too short based on a user-de�nedparameter (spe
i�ed as the shortest number of 
onse
utive valid bases allowable), itis reje
ted and not 
lustered. Reje
ted sequen
es are output to the reje
t file forlater inspe
tion.
1) Parse command-line
2) Allocate memory and initialize data structures
3) Read existing clusters into memory when performing an

incremental clustering
4) While there are unprocessed sequences in the input file

4a) Read a sequence from the input file
4b) Determine if the sequence is a reject
4c) If the sequence is not a reject, cluster the sequence

5) Write the clusters to the output file(s)Figure 5.2: Basi
 Flow of Exe
ution
If a sequen
e is not reje
ted, it is 
lustered in step 4
. This pro
edure isshown in more detail in �gure 5.3. First, the sequen
e is "hashed", as des
ribedin se
tion 5.1.3. These hashes are then used to sear
h for 
andidate 
lusters thathave high probability of mat
hing the input sequen
e, based on the similarity 
riteriabeing used. Ea
h 
andidate 
luster's primary is 
ompared to the input sequen
e todetermine whether or not the similarity 
riteria is met. This 
riteria is spe
i�ed bythe user at run-time as N of M bases, meaning that at least one M length window
ontaining no more than M � N errors must exist between two sequen
es for themto be 
onsidered similar.The two fun
tions that are used for this 
omparison are des
ribed in the follow-
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1) Hash the input sequence
2) Identify candidate primaries by searching for hash hits

2a) When a candidate is identified, call ScoreMatch()
2b) If score < threshold

i)   Move on to next candidate primary
Else

i)   Call ExtendMatch()
ii)  Add the input sequence to the candidate cluster
iii) Terminate the search and move on to next

input sequence
3) If the input sequence is not added to any cluster, it becomes the

primary of a new clusterFigure 5.3: Expanded Clustering Control Flow (line 4
 from �gure 5.2)ing se
tion. By default, the sear
h of the 
andidate 
lusters is greedy. The sequen
ebeing 
lustered is added to the �rst 
luster that is found to be similar. The extendedsear
h feature, �rst implemented in UI
luster 2.0 
an be enabled to sear
h theentire spa
e of 
andidate 
lusters for ea
h sequen
e that is input. In this mode ofoperation, an additional �le is output that 
ontains a list of mat
hing 
lusters forea
h sequen
e. However, the sequen
e is only added to the 
luster that it mat
hesbest (i.e., the longest mat
hing subsequen
e measured in units of bases).5.1.2 Comparing Sequen
esComparing sequen
es is the fundamental operation used by UI
luster to 
lus-ter sequen
es. Before the pro
ess used for 
omparing sequen
es is des
ribed, it isimportant to note that DNA is largely repetitive in nature. Before 
lustering is per-formed, it is important to mask out repetitive regions so that false similarities are notidenti�ed. Sequen
e similarity should only be based on base regions that are uniqueto a parti
ular sequen
e. Another related aspe
t of DNA that needs to be 
onsid-



37ered is low-
omplexity regions su
h poly-A tails and simple repeats. These regions
ontain little information and should also not be 
onsidered as eviden
e of similaritywhen 
omparing sequen
es. The input to UI
luster should always be masked forlow-
omplexity and repetitive regions using a program su
h as RepeatMasker [28℄. Ifsu
h prepro
essing is not performed, over
lustering (i.e. merging 
lusters that shouldbe disjoint) will o

ur.Our sequen
e 
omparison pro
edure is implemented as a two-phased operation.First, the S
oreMat
h fun
tion is 
alled to evaluate if the similarity 
riteria spe
i�edby the user has been met. If it is determined that there is a mat
h, ExtendMat
his 
alled to extend the minimal subsequen
e mat
h that was found by S
oreMat
hto its longest extent while retaining the user's 
riteria for the maximum number ofallowable errors. Calls to S
oreMat
h, while mu
h less 
omplex than a s
ore-basedsequen
e 
omparison su
h as the Smith-Waterman algorithm [29℄, will still be
omethe 
omputation's bottlene
k if it is 
alled too often. Avoiding unne
essary 
alls tothis sequen
e 
omparison fun
tion is the goal of our hashing optimization dis
ussed inse
tion 5.1.3. The next two subse
tions will dis
uss the S
oreMat
h and ExtendMat
hfun
tions spe
i�
ally. The sour
e 
ode implementing these fun
tions is lo
ated inappendix se
tion A.2.3.5.1.2.1 S
oreMat
hThe S
oreMat
h fun
tion determines if two sequen
es share a window of Nout of M bases in 
ommon. Three error modes need to be taken into a

ount when



38doing the 
omparison: insertions, deletions, and mismat
hes. The fun
tion re
ursivelydes
ends an alignment until either a region of N out of M bases is found or morethan M �N errors are found in every possible edit path.Figure 5.4 shows an example of 
omparing two sequen
es with S
oreMat
h.For this example, the mat
h 
riteria is N = 6 and M = 7 (Note: the tree is nottrun
ated where the M � N error limit has been ex
eeded so that all 
ases 
an beshown and dis
ussed). When an error is en
ountered there are three 
ases that mustbe 
he
ked. The left bran
h 
orresponds to a mismat
h error, the middle bran
h 
or-responds to a deleted base in the �rst sequen
e (or inserted base in se
ond sequen
e),and the right bran
h 
orresponds to an inserted base in the �rst sequen
e (or deletedbase in the se
ond sequen
e). In this example, the �rst three bases mat
h exa
tly.When the �rst di�eren
e is en
ountered at position four, S
oreMat
h �rst 
he
ks fora mismat
h error along the left bran
h. To do this, it 
alls itself advan
ing to thenext position in ea
h sequen
e. The �fth positions are found to mat
h, but the sixthpositions are di�erent. Again, S
oreMat
h 
alls itself �rst 
he
king for a mismat
herror. Another mismat
h error is found and this bran
h stops be
ause the end of bothsequen
es is rea
hed. The re
ursion falls ba
k one level and 
he
ks for a deletion inthe �rst sequen
e. This fails and the end of the se
ond sequen
e is rea
hed. Finally,the right bran
h is taken to 
he
k for an insertion in the �rst sequen
e. This su

eeds,but the end of the �rst sequen
e is rea
hed before a s
ore of 6 is found. The re
ursionthen falls ba
k to the fourth position and 
he
ks for a deletion in the �rst sequen
e.



39This 
orresponds to the middle tree in the �gure. Again, no mat
hes with a s
ore ofat least 6 are found. The re
ursion again falls ba
k to the fourth position and 
he
ksfor an insertion in the �rst sequen
e, taking the right-most bran
h. This sear
h issu

essful, �nding a mat
h of 6=7, so S
oreMat
h returns to the 
alling fun
tion withthe s
ore { 6. If no a

eptable mat
h had been found, S
oreMat
h returns the s
oreof the best path 
he
ked. Had a mat
h of s
ore 6 been found earlier (e.g. in the leftbran
h of base position 4) the fun
tion would have returned immediately.
ACGATTA
ACGTTAC

A=A

C=C

G=G

A!=T

T=T

T!=A

A!=C T!=C A=A

A!=T

T!=A A=A

T!=C

T=T

T!=A

T=T

T=T

A=A

4/7 4/7 5/7

3/7

4/7 4/7 6/7Figure 5.4: Example of S
oreMat
h Exe
ution
S
oreMat
h is potentially very 
ostly in terms of exe
ution time, but is made



40at least marginally eÆ
ient be
ause the number of errors is bounded, allowing wholesub-trees in the sear
h spa
e to be eliminated. The key assumption is that the numberof errors permitted will be relatively small (e.g. 95% identity for a given region). Iftoo many errors are permitted, the sear
h tree fans out rapidly in both the depth andwidth dimensions and performan
e su�ers dramati
ally.5.1.2.2 ExtendMat
hOn
e a mat
h has been found by S
oreMat
h, the ExtendMat
h fun
tion is
alled to lengthen it. The approa
h taken is to append regions of M bases until theend of one of the sequen
es is rea
hed or until a region shorter than M is 
an beappended. The regions are appended by repeatedly 
alling S
oreMat
h. For ea
happended region, the users N out of M similarity 
riteria must hold. The extensionstops on
e this 
riteria fails to be met for an appended region.5.1.3 HashingAll implementations of UI
luster use hashing te
hniques of various 
omplex-ities to �lter the sear
h spa
e and a

elerate sequen
e 
omparisons. A hash is simplyan integer that uniquely represents a short string of 
hara
ters. In the 
ase of DNA,the possible 
hara
ters are from the alphabet fA;C;G; Tg, whi
h represent the fourbases. Any sized alphabet 
an be used, although the maximum string length used togenerate a hash may be severely limited for larger alphabets for pra
ti
al purposes.The general equation used to generate a hash is given by equation 5.1.
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H = ��1Xi=0 (Ki � �) (5.1)In this equation H is the generated hash value, � is the string length, K isthe alphabet size, and � is the integer value assigned to the letter at position i in thestring being hashed. To generate hashes for DNA sequen
es, the alphabet size K isfour sin
e there are four DNA bases. Equation 5.2 gives the values assigned to ea
hbase. As a pra
ti
al matter, the string length � that 
an be used to generate hashesis limited by K, and the word size of the 
omputer. For the DNA alphabet, ea
h baserequires 2-bits to represent it (dlog2Ke where K = 4). Thus, the maximum value of� using a single word on a 32-bit ma
hine is 16.

� =
8>>>>>>>>>><>>>>>>>>>>:

0 if seq[i℄ = A1 if seq[i℄ = C2 if seq[i℄ = G3 if seq[i℄ = T (5.2)
When a sequen
e is hashed, equation 5.1 is used on every � length substring.Figure 5.5 shows the �rst six hashes generated for a sample sequen
e. Ea
h of thesehashes is indexed by the left-most 
hara
ter in the substring being hashed. There areno hashes generated for the last � � 1 bases in a sequen
e. Additionally, substringswith X's or N's in them 
annot be hashed. This means that for every X or N, thereare at least � substrings that 
annot be hashed. Re
all, X denotes a masked baseposition (due to repetitive or low 
omplexity sequen
e regions) and N denotes an



42ambiguous base position (due to un
ertainty during sequen
ing).
Sequence:      TTGGCGTTTTG
Hashes:

Hash 1:  CCACTTG
Hash 2:  CACTTGG
Hash 3:  ACTTGGC
Hash 4:  CTTGGCG
Hash 5:  TTGGCGT
...etc.

= 48406
= 44869
= 27601
= 39668
= 59069

G  A

G

A

C

C

C

C

C

CFigure 5.5: Example of Hashing a Sequen
e
The 
al
ulation to generate the hashes for a sequen
e only needs to be per-formed on
e, but the hashes are a

essed many times during the programs exe
ution.This amortizes the 
omputational overhead of generating the hashes. The a
tual C
ode that hashes a sequen
e is listed in se
tion A.2.2 in fun
tion hashSeq.5.2 TL
luster (Version 1)The �rst implementation of the 
lustering program was TL
luster. The mainfeatures of this program were in
remental 
lustering, repi
king of primaries, and a
-
eleration of sequen
e 
omparisons with per-primary sorted hash lists. The datastru
tures used to represent a 
luster are shown in �gure 5.6. A 
luster is 
omprisedof one primary stru
ture and zero or more se
ondary stru
tures. The se
ondary el-ements are stored in a linked-list atta
hed to the nextS p pointer of the primary



43stru
ture. If the 
luster is a singleton (i.e. 
ontains no se
ondaries), this pointer hasthe value of NULL. The se
ondaries are 
hained together using the nextS p pointer ofthe se
ondary stru
ture. The last se
ondary in the linked list has this pointer set tothe value NULL.
typedef struct PRIMARY {

char             *seqName;
char             *sequence;
int              *hashPrefix;
int              *hashPrefixIndex;
struct PRIMARY   *nextP_p;
secondary_t      *nextS_p;

} primary_t;

typedef struct SECONDARY {
char             *seqName;
char             *sequence;
double           score;
int              iP;
int              iC;
int              matchLength;
struct SECONDARY *nextS_p;

} secondary_t;Figure 5.6: Primary and Se
ondary Data Stru
tures
The 
lusters are stored in memory as a linked-list of primaries. The nextP ppointer of the primary stru
ture performs the linkage. When 
lustering a new se-quen
e, TL
luster starts at the beginning of this list and inspe
ts every primary inorder. The new sequen
e is added as a se
ondary to the �rst primary that it mat
hes.If the repi
k primary option is enabled and the new sequen
e is longer than the 
lus-ter's existing primary, it be
omes the new primary for the 
luster. The 
luster's oldprimary then be
omes a se
ondary member of the 
luster.



44When inspe
ting a primary, the hashes stored in the sorted hashPrefix arrayof the primary data stru
ture are used to determine if the sequen
e being 
lusteredhas any potential of being similar to the primary sequen
e. The hashes of the se-quen
e being 
lustered are 
ompared against the hashes of the primary sequen
e, andidenti
al hash values are identi�ed. When a mat
hing hash is found, the indi
es ofthe 
orresponding hashes (i.e., the base index of the hash in the primary and the baseindex of the hash in the sequen
e being 
lustered) is passed to the S
oreMat
h fun
-tion. If this fun
tion determines that there is at least an N ofM base mat
h betweenthe sequen
es, the ExtendMat
h fun
tion is 
alled and the sequen
e is added to theprimary's list of se
ondaries (or is repi
ked as the new primary). The statisti
s ofthe mat
h identi�ed by the sequen
e 
omparison fun
tions is stored in the se
ondarystru
ture in the s
ore, iP, iC, mat
hLen �elds. These 
orrespond to the identitys
ore of the mat
h (e.g., a mat
h of 95=100 bases 
orresponds to 95% identity), thestart base index of the mat
h in the primary, the start base index of the mat
h in these
ondary, and the length of the mat
h.The hashes of a primary sequen
e are stored in the hashPrefix array in nu-meri
ally as
ending order. The hashes of the sequen
e being 
lustered are also storedin as
ending order. Thus, to sear
h for identi
al hashes between two sequen
es, thesearrays only need to be linearly s
anned on
e. Ea
h array has an index 
ounter as-so
iated with it that starts at 0 and is in
remented until the last hash is inspe
ted.When sear
hing for identi
al hashes, if the hash at the 
urrent index of the primary's



45hash array is less than the hash at the 
urrent index of the new sequen
e's hash array,then the primary's index 
ounter is advan
ed. Alternatively, if hash at the 
urrentindex of the primary's hash array is greater than the hash at the 
urrent index ofthe new sequen
e's hash array, then the new sequen
e's index 
ounter is advan
ed. Ifthe hashes being examined are identi
al for both the primary and the sequen
e beingexamined, then S
oreMat
h is 
alled. The original implementation of TL
luster didnot store the hashes in sorted order. The entire primary array was inspe
ted for ea
hhash of the sequen
e being 
lustered. The last version of TL
luster had an order ofmagnitude in performan
e as a result of this sorting.The length of the hash probe used is an important parameter that 
an signif-i
antly a�e
t performan
e. Longer hash lengths will result in better performan
e fora given similarity 
riteria. It must also be 
hosen 
arefully so that potential similar-ities are not missed. The formula for 
al
ulating the optimal hash size is shown inequation 5.3. The rational for this equation is that for any 
hosen similarity 
riteriawhere M is the window size and M � N is the number of permitted errors, thereis at least one 
ontiguous, error-free region of � bases. Thus, the 
omparison of twosequen
es 
an be a

elerated by �rst sear
hing for short exa
t mat
hes of length �bases between the pair (i.e. sear
hing for identi
al hashes). If su
h a mat
h is found,a more exhaustive sear
h that permits errors 
an be performed. If no length � hashesare identi�ed, then the two sequen
es 
annot possibly 
ontain a window of M baseswith N bases in 
ommon.
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� = j MM �N + 1k (5.3)5.3 UI
luster 2.0TL
luster was found to work well for moderately sized data sets (30; 000 orfewer ESTs), however as the Rat EST gene dis
overy data sets grew, more perfor-man
e was required. To a

omplish this, a table was implemented in the next versionof our 
lustering program, renamed UI
luster 2.0, that stores the set of 
lusterprimaries 
ontaining any given hash value. Although this table, referred to as theGlobal Hash Table, in
reases memory requirements signi�
antly (4� lists of varyinglengths proportional to the number of primaries) , it eliminates the need to sequen-tially traverse the list of primaries for ea
h sequen
e 
lustered. Only primaries that
ontain hashes in 
ommon with the sequen
e being 
lustered are examined as 
andi-dates. Thus, performan
e is in
reased signi�
antly. In addition to this optimization,two features were added that enable more thorough 
lustering { 
he
king the reverse
omplement of a sequen
e, and performing an extended sear
h of all primaries for ea
hsequen
e being 
lustered. Both of these are options and 
an be enabled independentlyby the user. 5.3.1 Global Hash TableA stru
tural view of the global hash table (GHT) is shown in �gure 5.7. Ingeneral, this table 
ontains 4� top level entries, ea
h entry being a memory pointerto a linked list of 
luster primaries. Only primaries dis
overed by indexing into this



47table and traversing the 
orresponding linked list are 
onsidered as 
andidates.
0 1 2 3 4 5 6 7 48 - 1

Pointer To

Secondaries

Primary

Sequence Name

Sequence

Hashes

Hash Indexes

Touch Count

...

Linked list of

clusters that

contain at least 1

hash with value 2.

Figure 5.7: Global Hash Table
In the �gure, there are 48 entries 
orresponding to a hash window size of � = 8.On a 32-bit ma
hine, this equates to an empty table size of 256 kilobytes (48 entriesof 4 bytes ea
h). In order to keep a

esses to this table fast, this table is dire
tlya

essed by hash value. This is an important point sin
e this table is a

essed sofrequently. Any sort of traditional hash table implementation would require extra
al
ulations and have the potential for hash 
ollisions. The drawba
k is memoryusage of the table s
ales by 4� for DNA sequen
es (alphabet size = 4). The memoryrequired for the table when � = 16 is 16 gigabytes. Thus, some 
ompromises needto be made when 
hoosing the value of � to use. The shorter value 
hosen will bereferred to as � 0. Some empiri
al experimentation is ne
essary to determine what � 0



48is most e�e
tive for a given data set and for the available memory.Sin
e it is typi
ally not possible to use the optimal hash size for a given N outof M similarity 
riteria, a thresholding s
heme was developed to lessen the trade-o�in sele
tivity of 
andidates. For ea
h sequen
e 
lustered, the GHT is traversed toidentify 
andidate primaries that 
ontain at least � length � 0 hashes in 
ommon withthe sequen
e. Instead of looking for only one � length hash in 
ommon as was the
ase in TL
luster, multiple shorter hashes are sear
hed for. Equation 5.4 
an beused as a guide when 
hoosing the value of � to use for the optimal � and 
hosen � 0.The value of � 0 to use is a parameter de�ned by the user at run-time for 
exibility inmemory usage and performan
e.� = (M �N + 1) � (� � � 0) (5.4)An integer 
ounter was added to the primary data stru
ture to 
ount thenumber of times a given primary is en
ountered, or tou
hed while traversing theGHT for a given sequen
e. Only if a primary is tou
hed more than � times is a
omparison performed against the sequen
e being 
lustered. This 
ounter is reset tozero after every sequen
e pro
essed.Intuitively, the thresholding s
heme lowers the probability that S
oreMat
hwill be 
alled for a primary that doesn't mat
h the sequen
e being 
lustered. Similarly,the GHT 
learly has the potential to eliminate many of the failed 
alls to S
oreMat
hin TL
luster. In pra
ti
e, the GHT optimization has been highly e�e
tive { usually



49improving performan
e by fa
tor of at least 30 over TL
luster.5.3.2 Extended Sear
hDue to the use of TL
luster in our sequen
e pro
essing pipelines, it was de-termined that there are 
ertain situations where 
he
king all of the primaries for ea
hsequen
e 
lustered is desirable. Dire
tly modifying TL
luster to do this would havebeen relatively straight-forward, however performan
e would have degraded signi�-
antly. Instead of stopping on average half way through the traversal of the primarylinked list for sequen
es that be
ome se
ondaries, the remainder of the list would needto be traversed.This property was a

omplished in pra
ti
e by the use of the GHT. Performan
eis only moderately in
reased be
ause the sear
h spa
e is �ltered into a relatively shortlist of 
andidate primaries for ea
h sequen
e 
lustered.5.3.3 Reverse Complement Che
kingA 
ommon error in sequen
ing DNA 
auses the wrong strand to be sequen
edin the opposite dire
tion. To dete
t this, a feature was added to 
he
k the reverse
omplement of a sequen
e being 
lustered in addition to 
he
king it in its originalform. If the extended sear
h option is enabled, the reverse 
omplement of a sequen
eis always 
he
ked for similarity to the 
luster primaries. Otherwise, it is only 
he
kedfor sequen
es where no similarity was found in the sequen
e's original orientation.To generate the reverse 
ompliment, the 
hara
ter string representing the se-quen
e being 
lustered is 
opied into a working bu�er. This bu�er is then reversed



50in-pla
e by su

essively swapping bases. After reversal, the sequen
e string is 
om-plemented a

ording to DNA pairing rules (i.e fA! Tg; fT ! Ag; fG! Cg; fC !Gg). The C 
ode that implements these steps is found in the fun
tion revComp listedin appendix se
tion A.2.9. The resulting sequen
e string is then hashed and pro
essedin exa
tly the same way as the original sequen
e.5.3.4 Additional Minor ChangesTwo additional 
hanges are worth mentioning. The Linux operating system, orrather the library that implements the mallo
 fun
tion [30℄, has limits on the numberof memory blo
ks that 
an be allo
ated. This 
aused UI
luster to 
rash for largedata sets without explanation. Considerable time was spent debugging the programin order to identify the 
ause of the 
rash. On
e the mallo
 limitation was dis
overed,
ustom memory allo
ation routines were implemented as a solution. These fun
tionsare listed in appendix se
tion A.2.6. The vast majority of the 
alls to mallo
 wereidenti�ed to be of a limited number of sizes. Indeed, this is be
ause entries in theGHT are all of the same size and are allo
ated separately. Other data stru
tures inthe appli
ation have this property as well. The memory allo
ation fun
tions operateby allo
ating a large 
hunk of memory that is a multiple of the size in bytes of agiven data stru
ture. This, along with some bookkeeping, enables many stru
turesto be allo
ated with a single 
all to mallo
. This solved the 
rashing problem andwas instru
tive as to the issues that arise when working with large data sets.The se
ond 
hange was a result of problems en
ountered when 
lustering long
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es. TL
luster was implemented to use a 
rude \bubble sort" algorithm forsorting hash arrays. While this was suÆ
ient for the average EST sequen
e length(400-800bp), this be
ame a bottlene
k for longer sequen
es su
h as full-length 
DNAsand genomi
 
ontigs. The qui
ksort algorithm was implemented to work around thisproblem. The algorithm used was adapted from [22℄ to also 
arry along the hashindex array. The sour
e 
ode for this routine is listed in appendix se
tion A.2.8.5.4 UI
luster 3.0The latest version of UI
luster improves on its prede
essor by adding parallelexe
ution 
apability and the notion of virtual primaries. These features are dis
ussedin the following se
tions. 5.4.1 Parallel Exe
utionThe parallel exe
ution fun
tionality is implemented using the MPICH MPI li-brary [19℄. The number of UNIX pro
esses to use is a parameter spe
i�ed by the userat run-time. If one pro
ess is 
hosen, the program operates identi
ally to UI
luster2.0 if the virtual primary generation option is not enabled (dis
ussed in the nextse
tion). If more than one pro
ess is 
hosen, the program's exe
ution and memoryrequirements are spread a
ross multiple UNIX pro
esses and pro
essors. If the 
om-puting hardware being used is an SMP ma
hine, ea
h of these pro
esses 
an use aseparate CPU. Alternatively, if the program is operating in a 
lustered environment,su
h as a Beowulf 
lass system [4℄, the pro
esses are spread a
ross multiple distributed
omputers.



52The only 
hange to the 
lustering algorithm is a series of 
olle
tive 
ommuni
a-tions between pro
esses after the GHT has been sear
hed and the mat
hing primariesidenti�ed. The list of mat
hing primaries for ea
h node is sorted by s
ore and the bestmat
h is 
ommuni
ated to all other nodes. If no mat
h is found, then the sequen
ebeing 
lustered be
omes the primary of a new 
luster and is assigned to a single pro-
ess, determined by the pro
ess ID equal to the modulus of the 
luster ID and thenumber of pro
esses. In this way, the 
lusters are evenly spread a
ross pro
esses andthe memory requirements are redu
ed a

ordingly (assuming ea
h pro
ess also getsassigned approximately the same number of se
ondaries).If a similarity to a 
luster is determined, the pro
ess with the best s
ore isdetermined and the sequen
e is added to the best mat
hed 
luster on that pro
ess.5.4.2 Virtual PrimariesThe virtual primary generation feature of the latest version has been imple-mented using the bl2seq [31℄ program to identify the extent of the overlap betweenthe 
urrent virtual primary of a 
luster and the sequen
e being added to the 
lus-ter. bl2seq uses the BLAST [3℄ algorithm to align two sequen
es and assign a s
oreto ea
h of the mat
hing regions identi�ed. It is, however, 
onsiderably slower thanthe sequen
e 
omparison fun
tions in UI
luster. The reason for using it insteadof the S
oreMat
h and ExtendMat
h fun
tions is two-fold. First, it is more a

u-rate in determining the length of a mat
h. It reports the end base of a mat
h forboth sequen
es being 
ompared, instead of a single mat
h length parameter as does
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oreMat
h. This is important when aligning a new sequen
e to a virtual primaryto see if it 
an be extended. ExtendMat
h, be
ause it uses a heuristi
 for speed(repeatedly 
alling S
oreMat
h), and sometimes misses some bases at the end of amat
h. The se
ond reason for using bl2seq is to identify 
ases where there are mul-tiple mat
hing regions. S
oreMat
h and ExtendMat
h only identify one mat
h. Thisis useful for identifying sequen
es possibly representing alternative spli
e forms of agene. Future versions of UI
luster may implement the ne
essary fun
tionality ofbl2seq internally. It was used for the purpose of speeding development of the virtualprimary generation feature.When a sequen
e is added to a 
luster, the bl2seq fun
tion is 
alled to 
omparethe new sequen
e to the 
luster's virtual primary. The sour
e 
ode to 
all bl2seqand parse the results is listed in appendix se
tion A.2.10. A list of mat
hes sortedby s
ore is returned to the 
aller. Ea
h mat
h in the list 
ontains the start base inthe virtual primary, the start base in the new sequen
e, the end base in the virtualprimary, the end base in the new sequen
e, the s
ore of the mat
h (mat
h lengthin the virtual primary), and the dire
tion of the mat
h. This information is thenused by the addSe
ondary fun
tion (listed in appendix se
tion A.2.2) to determineif the virtual primary 
an be extended by the new sequen
e. Five 
ases are dete
ted:bases 
an be added to the front of the virtual primary, bases 
an be added at theend of the virtual primary, bases 
an be added at both the front and end of thevirtual primary, the new sequen
e is entirely 
ontained in the virtual primary, and
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e partially hits the virtual primary but 
ontains signi�
ant regionsthat are in
onsistent with it. If an extension is possible, the added bases from thenew sequen
e are 
opied into the virtual primary bu�er. If bases are added to thebeginning, the existing virtual primary is shifted to the right in the bu�er. Theresulting sequen
e is then hashed and added to the GHT. The hashes of the previousvirtual primary are removed before this is done.When the virtual primary bu�er is �rst 
reated, twi
e as mu
h memory thanne
essary is allo
ated. When an extension would 
ause this bu�er to be ex
eeded, thebu�er is doubled again with a 
all to the reallo
 fun
tion [30℄. By allo
ating morespa
e than ne
essary, the number of reallo
 
alls is redu
ed, thus redu
ing memoryfragmentation.The latest release of UI
luster is the �rst version that in
orporates the virtualprimary generation feature. Over time, the usefulness of this feature will be evaluatedmore extensively than has been done to date. If it is determined to be useful, itsperforman
e will be improved in future versions of the 
lustering appli
ation.5.5 Running UI
luster 3.0This se
tion is intended to be instru
tive in 
ompiling and using the latestversion of UI
luster. The appli
ation is available in sour
e 
ode form from ourproje
t web site (http://genome.uiowa.edu). The previous releases of the appli
a-tion, TL
luster 1.0 and UI
luster 2.0, and a

ompanying do
umentation are alsoavailable from this site. The pro
edures for running UI
luster 2.0 are essentially
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al to what is presented in this se
tion with the ex
eption of the virtual primaryand parallel exe
ution features. 5.5.1 CompilingOn
e the sour
e 
ode to the program has been downloaded from the Internet,it needs to be 
ompiled into an exe
utable program before it 
an be used. To dothis, the sour
e distribution must be un
ompressed, 
on�gured, and 
ompiled witha C 
ompiler. The user performs all of these steps entering 
ommands at a UNIX
ommand-line.An MPI library must be installed on the UNIX 
omputer being used beforeUI
luster 3.0 
an be 
ompiled. The program was developed using the freely avail-able MPICH MPI library. This library is available for the UNIX platforms (Linux,Sun, HP) UI
luster supports. Instru
tions for obtaining and 
ompiling MPICH areavailable on the Internet (http://www-unix.m
s.anl.gov/mpi/mpi
h). Other MPIimplementations should work, however they have not been thoroughly tested. The
ompilation of UI
luster 2.0 does not require an MPI library. If the user doesnot need the parallel exe
ution and virtual primary generation features of UI
luster3.0, then version 2.0 should be used. Other than this requirement, the pro
edure for
ompiling the two versions is the same.The UNIX 
ommands ne
essary to build the UI
luster exe
utable are givenin �gure 5.8. The �rst step is to de
ompress and un-ar
hive the distribution byexe
uting the �rst two 
ommands in the �gure at a UNIX shell prompt. The next



56step is move into the main sour
e dire
tory by using the third 
ommand. The fourthstep 
on�gures the �les ne
essary to build the appli
ation. Finally, typing \make"builds the exe
utable. After a su

essful build, the exe
utable will be a �le 
alledui
luster. It may be 
opied to a lo
ation in the user's path so it 
an be exe
utedfrom anywhere on the system.
1) gzip -d UIcluster-3.0.tar.gz
2) tar -xvf UIcluster-3.0.tar
3) cd UIcluster-3.0
4) ./configure
5) makeFigure 5.8: UNIX Commands for Compiling UI
luster
5.5.2 Command Line Options and UsageFigure 5.9 shows the 
ommand line options input into the program. Themeaning of most of these has already been dis
ussed in this 
hapter, however thenames may be slightly di�erent and/or abbreviated. With the ex
eption of the inputsequen
e �le, all parameters are optional for the user to spe
ify. The default value forea
h option is shown in the right 
olumn of the �gure. Both short and long optionnames are available for ea
h parameter, shown in the left 
olumn of the �gure.The --preClus option takes as its argument a �le 
ontaining a list of �les,one per line, of previous 
lustering results to use for in
remental 
lustering. The--reje
tCrit is spe
i�ed as the minimum number of bases required to 
luster an in-
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UIcluster 3.0.4 Usage:   uicluster [options] input_fasta_file

Valid Options: (defaults are in parenthesis)
-F, --preClus     specifies the preClustered infile    (none)
-R, --rejCrit     specifies the rejection criteria  (100 bases)
-H, --hashSize    specifies the hash size           (  8 bases)
-S, --startSkip   specifies the start skip          ( 18 bases)
-s, --endSkip     specifies the end skip            (  0 bases)
-M, --matchLen    specifies the length to match     ( 40 bases)
-E, --errLimit    specifies the error limit         (  2 bases)
-C, --maskChar    specifies the mask character         ('X')
-h, --hitThresh   specifies the hit threshold           (16)
-P, --wrongPen    specifies the wrong penalty            (1)
-p, --gapPen      specifies the gap penalty              (1)
--repick          repick cluster primaries             (off)
--tryRevC         check reverse compliment             (off)
--keepGoing       perform exhaustive search            (off)
--vPrimary        generate virtual primary             (off)
--help            view this messageFigure 5.9: UI
luster 3.0 Command-line Interfa
eput sequen
e. The --hashSize spe
i�es the value of � 0 to use. --startSkip spe
i�esthe number of bases to disregard at the beginning of a sequen
e. This is useful whenthere is a poly-T tail still present in 3' EST data. The --endSkip similarly spe
i�esthe number of bases to skip at the end of a sequen
e. The --mat
hLen spe
i�esmat
h window, M , to use and --errorLimit spe
i�es the number of errors to allow,M � N . The --maskChar parameter designates the 
hara
ter that will be used toidentify low-
omplexity and ambiguous regions. The --wrongPen and --gapPen des-ignate penalties to use for gaps (i.e. inserted and deleted bases) and mismat
hed basesin the S
oreMat
h fun
tion. The --repi
k 
ag enables the repi
king of primariesas dis
ussed in se
tion 5.2. The --tryRevC 
ag enables reverse 
omplement 
he
kingof input sequen
es as dis
ussed in se
tion 5.3.3. The --keepGoing 
ag enables theextended sear
h 
apabilities dis
ussed in se
tion 5.3.2. Finally, the --vPrimary op-tion turns on the virtual primary generation feature for ea
h 
luster as dis
ussed in



58se
tion 5.4.2.If parallel exe
ution of the program is desired, the mpirun program must beused to laun
h the exe
utable on multiple 
ompute nodes simultaneously. The\-np X" (where X is a number) argument of this program is used to designate howmany 
ompute nodes to use. For example, to run UI
luster 3.0 on 8 
ompute nodeswith the default options and an input sequen
e �le named seqs.fasta the 
ommand is\mpirun -np 8 ui
luster seqs.fasta". To exe
ute the program serially the 
ommandwould have been simply \ui
luster seqs.fasta". In addition to using mpirun for parallelexe
ution, all of the input �les need to be available on ea
h of the 
ompute nodes(e.g. 
ross-mounted using the network �le system (NFS) proto
ol).5.5.3 Output File FormatThe 
luster �les output by all version of the 
lustering appli
ation are format-ted in essentially the same way. The new 
lusters are output in a �le named the sameas the input sequen
e �le with an \.
lus" extension (e.g. the 
luster �le output for aninput �le named input.fasta is input.fasta.
lus). In the in
remental 
lustering mode,a �le with an \.out" extension is output ea
h 
luster �le input into the program.Ea
h 
luster �le 
ontains one or more 
lusters, ea
h 
luster being 
omprisedof one or more sequen
es. For ea
h 
luster, the 
luster primary is given �rst andis signi�ed by a line starting with \�P:" followed dire
tly by the sequen
e's name.The sequen
e string starts on the next line. The sequen
e is printed as seventy basesper line. Any se
ondary sequen
es belonging to the 
luster follow dire
tly after the



59primary, and are formatted in the same way ex
ept that ea
h sequen
e de�nitionstarts with \�S:". If the virtual primary option is enabled, it is lo
ated between theprimary and the �rst se
ondary sequen
e. Its sequen
e de�nition starts with \�VP:".In addition to the 
luster output �les, there are two a

ompanying �les output.The reje
ts �le (input sequen
e �le-name with the \.rej" extension appended) 
ontainssequen
es that were reje
ted from the 
lustering. The format of this �le is a numberedlist of sequen
es and is fairly self-explanatory. The hits �le (input sequen
e �le-namewith the \.hits" extension appended) 
ontains the list of 
lusters that were found to
ontain a mat
h meeting the users N out of M similarity 
riteria for ea
h sequen
e.In UI
luster 3.0, ea
h line in this �le is formatted as a sequen
e name followed bya list of tuples of the form 
luster ID.mat
h s
ore:dire
tion representing the mat
hed
luster for that sequen
e. The dire
tion �eld is either \f" or \r", indi
ating forwardand reverse 
omplement mat
hes. A sample entry of this �le listing two mat
hed
lusters (i.e., 
luster ids 4 and 98) is \UI-R-A0-ae-e-12-UI: 4.378:f 98.175:r".
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CHAPTER 6RESULTSThis 
hapter presents results obtained by utilizing the UI
luster 
lusteringappli
ation dis
ussed in this thesis. The �rst two se
tions of the 
hapter dis
uss twoimportant uses of the appli
ation { novelty assessment and gene index 
reation. Thethird se
tion of the 
hapter 
ompares the University of Iowa's rat gene index 
reatedby UI
luster and NCBI's rat UniGene index. Finally, the last se
tion reports onthe measured performan
e and memory usage of the various versions of UI
luster.6.1 EST Sequen
ing Novelty AssessmentUI
luster was originally developed for the purpose of assessing 3' EST se-quen
ing novelty rates, roughly 
orresponding to the gene dis
overy rate. The pro-gram has been used in the produ
tion sequen
ing pipelines of several proje
ts under-way in our laboratories at the University of Iowa [11℄ and at other institutions(KAIST, Korea, Washington University, St. Louis, UNL, Lin
oln, MCW, Milwaukee,among others). Equation 6.1 states the equation used for 
al
ulating per
ent novelty.% Novelty = # 
lusters# sequen
es � 100 (6.1)This equation is utilized to 
al
ulate in
remental and overall novelty rates



61for individual libraries and for proje
ts as a whole. In
remental novelty 
al
ulationsare performed daily to monitor the sequen
ing e�orts and to determine when librarysubtra
tions and/or normalizations should o

ur [5℄. Both of these pro
edures havebeen proven to dramati
ally in
rease novelty rates. However, they are time 
onsumingand 
annot be performed on a 
ontinual basis.Figure 6.1 shows an example of the e�e
tiveness of these pro
edures for aprogression of four 
DNA libraries, named C0, C1, C2p, and C3. More details 
anbe found in [25℄.
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Figure 6.1: In
remental Library Novelty
C0, the �rst in the progression, was sequen
ed to obtain roughly 7,000 ESTs.This is shown in �gure 6.1 as the left-most downward trend. To in
rease the novelty



62rates, the C1 library was 
reated by removing previously seen 
DNA trans
ripts fromthe C0 library. Sequen
ing from this library is depi
ted in the se
ond downwardtrend in the �gure (7,500{12,000). Again, over time the sequen
ing from this librarybe
ame too low and the C2p library was 
reated from it. This is shown in the thirddownward trend in the �gure (12,000{17,000). Finally, the C3 library was 
reatedfrom C2p to improve novelty rates (17,000{21,000). For ea
h su

essive library, thein
remental novelty rates steadily de
rease sin
e the redundan
y removing pro
eduresare not perfe
t. It should also be noted that the large drop-o�s in novelty immediatelybefore ea
h library is a unique 
hara
teristi
 of this data set and will probably not beobserved for other library progressions.6.2 Generation of Gene Indi
esA related task to novelty assessment is gene index 
reation. Ideally, runningUI
luster on a set of sequen
es will assess novelty and generate a gene index (orUniGene set as it is popularly referred to). Ea
h 
luster will represent a gene, andthe total number of 
lusters divided by the number of sequen
es will represent thenovelty of the sequen
es 
lustered. Su
h indi
es are essential for pi
king 
DNA 
lonesto use in the radiation hybrid mapping e�orts under-way at our laboratory.The spe
i�
 pro
edures that are used to generate our UniGene indi
es are
onstantly being re�ned. The similarity 
riteria that we have most re
ently beenusing is a mat
hing window of 38/40 (i.e. N = 38;M = 40) bases between twosequen
es for them to be put into the same 
luster. Over time, the repi
king of



63primaries and the reverse 
omplement 
he
king features have been in
orporated intoour UniGene build pro
edure. At the time of writing this thesis (April 9, 2001),our Rat Gene Dis
overy UniGene index 
ontains 62,296 
lusters, 213,372 sequen
es.Our Human Can
er Genome Anatomy Proje
t UniGene index 
ontains 29,509 
lusters(40,684 sequen
es), and our Mouse Brain Mole
ular Anatomy Proje
t 
ontains 37,983
lusters (88,844 sequen
es). Current statisti
s on our UniGene indi
es 
an be obtainedfrom our proje
t web site (http://genome.uiowa.edu).Re
ently, the number of genes estimated to be in the human genome hasbeen redu
ed from 100,000 to 30,000-40,000 [17℄. Most other higher-level mammalianorganisms are expe
ted to have similar numbers of genes. This is 
ausing us torevise our UniGene build pro
edure be
ause, for example, our 62,296 rat 
lusters(genes) seems to be mu
h too high (under
lustered). We suspe
t low-quality ESTsand other sequen
ing errors (alternative polyadenylation, internal restri
tion sites,and internal priming) to be the 
ause of this. As a �rst attempt at eliminatingsu
h 
ontamination, we have formed a Rat UniGene set by only 
ounting 
lustersthat 
ontain one or more sequen
es with both the tail and signal features present.These features are identi�ed in an EST sequen
e by the estPrep appli
ation that ourlaboratory has developed [11℄. When this 
riteria is applied, 23,902 
lusters remain inour rat UniGene index. We are 
urrently evaluating the e�e
tiveness of this 
hange.However, the redu
ed number of 
lusters seems to be more 
onsistent with the revisedgene estimates. An additional 
hange planned for the future is to utilize the draft
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 sequen
e to verify 
lusters. This is possible be
ause most rat genes(> 98%) are also present in the human genome. If all sequen
es in a 
luster mat
h to alo
alized region of the human genome (e.g., within the same 10,000 base region) thenthat 
luster is likely to represent the same gene. Clusters with sequen
es mat
hingdistant regions of the genome should be looked at with suspi
ion.6.3 A

ura
y AssessmentComparisons between our rat UniGene index and NCBI's UniGene index [27℄will be used to assess the a

ura
y of our sequen
e-similarity-based 
lustering. Ad-ditionally, the sequen
e assembly program phrap [13℄ will be used to assemble our
lusters into 
onsensus sequen
es. Instan
es where the sequen
es in a 
luster assembleinto one 
onsensus (
ontig) provides additional eviden
e that the sequen
es representthe same gene. 6.3.1 Comparisons to NCBI UniGeneA set of Perl [35℄ s
ripts were developed to 
ompare our rat 
lustering resultsto NCBI's rat UniGene (ftp://ftp.n
bi.nlm.nih.gov/repository/unigene). In order toobtain the most fair 
omparison, the 128,229 University of Iowa ESTs 
ontained inthis index were extra
ted and put into a FastA formatted �le. This number is redu
edfrom the 213,372 sequen
es stated earlier be
ause NCBI requires the tail feature tobe present in an EST for it to be used in their 
lustering. Other minor EST sele
tion
riterias also di�er between our methods.The latest version of UI
luster was used to 
luster this data set. The param-



65eters used were N = 38;M = 40; � = 8; � = 15 and the repi
k primary and reverse
omplement 
he
king options were enabled. Running UI
luster resulted in 41,726
lusters. Three types of 
luster relationships were then determined by the Perl s
ript{ 
lusters mat
hing between the UI
luster 
lustering and NCBI's 
lustering and
lusters that are split into one or more 
lusters between the two. These relationshipsare shown graphi
ally in �gure 6.2. The 
ase where a UI
luster 
luster is totally
ontained in a single NCBI 
luster (e.g., in the �gure there is an extra sequen
e inthe NCBI 
luster for the mat
hing 
lusters 
ase) is 
onsidered to be mat
hing.

b) split cluster

a) matching clusters

UICluster
Clustering

NCBI UniGene
Clustering

Figure 6.2: Comparing Clusters
The analysis of the 41,726 
lusters generated by UI
luster showed that 39,165
lusters (93.9%) mat
hed an NCBI 
luster. The remaining 2,561 
lusters (6.1%) were



66split into multiple NCBI 
lusters. Performing the 
omparison in the opposite dire
tionfor the 41,522 NCBI 
lusters 
ontaining University of Iowa ESTs resulted in 38,890(93.7%) NCBI 
lusters dire
tly mat
hing a UI
luster 
luster. The remaining 2,632(6.3%) NCBI 
lusters were split among multiple 
lusters in the UI
luster 
lustering.6.3.2 Analysis of Cluster AssembliesAnother set of Perl s
ripts were developed to generate 
luster 
onsensus se-quen
es for ea
h of our 
lusters using the phrap [13℄ sequen
e assembly program.Ideally, ea
h 
luster should assemble into one 
ontig (i.e., a 
onsensus sequen
e thatevery sequen
e in the 
luster aligns to) sin
e all of the sequen
es should represent thesame 3' UTR. In pra
ti
e, 
lusters 
ontaining sequen
es from multiple trans
ripts ofthe same gene will assemble into more than one 
ontig. Clusters 
ontaining sequen
esthat shouldn't belong will also 
ause multiple 
ontigs to be produ
ed.The s
ript's analysis of our re�ned 23,902 
luster rat UniGene index (i.e., theindex dis
ussed at the end of se
tion 6.2 that was generated by only using ESTswith the tail and signal features present) shows that of the 13,334 non-singleton
lusters (i.e., 
lusters 
ontaining only one sequen
e), 8,362 (62%) assemble into one
onsensus sequen
e that represents all of the sequen
es in the 
luster. These 
lustersare likely to represent true genes. The remaining 37% assemble into more than one
onsensus sequen
e. Automated methods for 
lassifying the 
auses of these 
asesare 
urrently being developed. However, hand examination is showing that the vastmajority appear to be instan
es of multiple spli
e forms being present in the same
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luster. Other 
auses in
lude alternative polyadenylation, internal not sites, 
himeri
sequen
es, and internal priming. This analysis is somewhat en
ouraging 
onsideringthat it is estimated that between 30{40% of human genes 
ontain multiple spli
eforms. However, spli
ing variations are thought to usually not o

ur in the 3' UTR.Thus, further inspe
tion by expert biologists is needed to gain more understandingof the multi-
onsensus 
lusters.6.4 Performan
e AssessmentThe performan
e of the versions of UI
luster presented in this thesis is dis-
ussed in this se
tion. While it is impossible to examine the entire parameter spa
eof the program, an e�ort has been made to present the most important performan
emetri
s. All of the performan
e results obtained in this se
tion were obtained using aset of 16 dual 500MHz Pentium III 
omputers. Ea
h 
omputer (
ompute node) 
on-tained either 1 gigabyte or 2 gigabytes of memory. Gigabit Ethernet (1000 megabitsper se
ond) was used for the 
ommuni
ation network.6.4.1 Exe
ution TimeFor serial exe
ution, the largest performan
e in
rease was realized with theintrodu
tion of the global hash table in UI
luster 2.0. Figure 6.3 shows the per-forman
e di�eren
e between TL
luster and UI
luster 2.0 for 
lustering 80,766 ratEST sequen
es with a similarity 
riteria of N = 38;M = 40. For this test, � = 8and � = 15 were used with UI
luster 2.0. These are the parameters that ourprodu
tion pipelines 
urrently employ. Other parameters will produ
e di�ering lev-



68els of performan
e gain, however results similar to those presented in this �gure aretypi
ally observed. The serial performan
e of UI
luster 2.0 and UI
luster 3.0 isessentially the same.
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luster vs. UI
luster
Figure 6.4 illustrates the parallel speedup obtained by UI
luster 3.0. Sin
ethe implementation uses a 
olle
tive 
ommuni
ation at the end of every sequen
e, theamount of 
omputation required for ea
h sequen
e is important. As the grain sizein
reases, better performan
e should be observed sin
e relatively less 
ommuni
ationis being performed. The �rst 
urve (labeled 1) 
orresponds to the default parametersused in our pipeline. The se
ond 
urve (labeled 2) adds the extended sear
h option.The third 
urve (labeled 3) adds the reverse 
omplement 
he
king.Performan
e a
tually de
reases from the serial 
ase with two 
ompute nodesfor the �rst 
ase. This is probably due to the 
omputation not being distributed
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Figure 6.4: Parallel Speedupevenly and the added 
ost of the 
ommuni
ation. As the 
omputation is spread a
rossmore 
ompute nodes, performan
e in
reases somewhat but is never more than doublethe performan
e of the serial 
ase. The single node exe
ution time of this 
ase isapproximately 12 minutes and the exe
ution time of the 16 node run is approximately7 minutes.Enabling the extended sear
h of primaries signi�
antly in
reases the realizedspeedup. The 
omputation s
ales well up to 8 nodes and then levels o�. For this
urve, the exe
ution time of the single node run was approximately 38 minutes andthe exe
ution time of the eight node run was approximately 8.5 minutes.The third 
urve s
ales approximately the same as the se
ond. The exe
utiontime of this 
ase of the single node run is approximately 48 minutes and the exe
utiontime of the eight node run is approximately 11 minutes.



706.4.2 Memory UsageThe introdu
tion of the global hash table in UI
luster 2.0 greatly in
reasedthe memory requirements of the appli
ation. For a set of 82,624 ESTs, TL
lusterrequired about 100 megabytes of memory. For the same data set, both versions ofUI
luster required roughly 171 megabytes of memory.Figure 6.5 shows how memory usage s
ales for the same data set with UI
luster3.0. The memory requirements s
ale fairly linearly for in
reased numbers of 
omputenodes, whi
h suggests that the approa
h of distributing an equal number of 
lustersto ea
h 
ompute node works well.
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Figure 6.5: Parallel Memory S
aling
Sin
e user programs are limited to addressing 2 gigabytes of memory withLinux, the maximum number of ESTs that 
an be 
lustered is limited to approxi-mately 1 million sequen
es. For larger data sets, memory be
omes an issue when



71exe
uting serially. UI
luster 3.0 has been used to su

essfully 
luster a data set of1,956,525 mouse EST sequen
es. Performing this 
lustering with 16 
ompute nodesrequired approximately 300 megabytes per 
ompute node and 18 hours, 34 minutesof 
ompute time. 6.4.3 Parameter VariationFigure 6.6 shows how enabling various options e�e
ts the exe
ution time ofUI
luster 2.0 (and thus UI
luster 3.0 when exe
uting with a single 
omputenode) for a data set of 82,624 ESTs. All of the 
ases in top half of the �gure wereused with the similarity 
riteria N = 38 and M = 40 and the parameters � = 8and � = 15. The \default" option means that UI
luster was run without therepi
king of primaries (i.e., \Repi
k"), reverse 
ompliment 
he
king (i.e., \TryRev"),extended sear
hing (i.e., \Ext"), and virtual primaries generation (i.e., \vPrim")options enabled. The virtual primary generation option in
reases exe
ution time themost. This is be
ause 
alling the external bl2seq program, used to implement theoption, involves 
onsiderable overhead. Various option 
ombinations are also in
ludedin the table. It should be noted that the exe
ution times of these option 
ombinationsare not simply the exe
ution times of the individual options added. This is be
auseoptions 
an e�e
t one another (e.g., enabling the extended sear
h option and thereverse 
omplement 
he
king option means that the reverse 
omplement is alwaysgenerated and 
he
ked for ea
h input sequen
e This in
reases the overhead for ea
hinput sequen
e 
onsiderably).
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Parameters Time in Minutes

Default 11.2

Repick 15.21

TryRev 23.4

Extended 36.2

Virtual Primaries 79.1

TryRev + Ext 92.33

TryRev + Ext + Repick 118.2

TryRev + Ext + Repick + vPrim 149.75

z¢=6 l=21 > 24 hours

z¢=7 l=18 440.17

z¢=8 l=15 36.6

z¢=9 l=12 9.46

z¢=10 l=9 5.32

z¢=11 l=6 5.3

z¢=12 l=3 5.26

z=13 l=1 5.18Figure 6.6: E�e
ts of 
lustering options on exe
ution timeThe bottom half of the �gure gives the run-times of the program using di�erentvalues of � 0 and � with the same similarity 
riteria as before (N = 38, M = 40). Therun-time using the optimal value of � = 13 is also given (
al
ulated by equation 5.3).For ea
h � 0, � is 
al
ulated by the formula given in se
tion 5.3.1 (equation 5.4). When� 0 = 6, the empty global hash table uses only 16 kilobytes of memory. However, per-forman
e is very poor be
ause too many false 
andidate primaries are identi�ed.When � = 13, the global hash table uses 256 megabytes of memory. However, ap-proximately the same performan
e 
an be obtained by using � 0 = 10 and � = 9. Thisis be
ause for � 0 = 10 or greater, the global hash table optimization is nearly 100%e�e
tive in �ltering the sear
h spa
e down to only true 
andidate primaries. Thus,the S
oreMat
h fun
tion is 
alled the minimal number of times. For � 0 = 10, the



73empty global hash table uses a reasonable 4 megabytes of memory.
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CHAPTER 7CONCLUSION AND FUTURE WORKThis thesis has presented a software tool for geneti
 sequen
e 
lustering. Ithas the 
hara
teristi
s of high-performan
e, a

ura
y, and 
exibility. UI
lusterhas proven its robustness and utility by its use in several large-s
ale gene dis
ov-ery proje
ts at the University of Iowa. Additionally, the 
exibility of UI
lusterhas allowed it to be useful for many appli
ations beyond its initial intent of 3' EST
lustering.However, there is still room for improvement. The following se
tions providebrief overviews of some of the more signi�
ant enhan
ements proposed for UI
luster.7.1 Alternative Trans
ript Identi�
ationCurrently, sequen
es that may be 
andidates for alternative spli
ing are markedfor later inspe
tion by a human operator. More advan
ed te
hniques 
ould be in
or-porated into UI
luster that examine 
lusters and attempt to identify exon bound-aries and alternative trans
ripts. When available, these te
hniques 
ould make use ofgenomi
 sequen
e data to a

urately order the exons that are identi�ed.



757.1.1 Without Genomi
 Sequen
eCurrently, the virtual primaries 
reated for a 
luster will only represent a singletrans
ript. Sequen
es added to a 
luster either are 
onsistent with the virtual primaryor they are 
agged as problem sequen
es for later inspe
tion. Su
h sequen
es mayrepresent di�erent trans
ripts of the same gene, possibly 
ontaining exons that are notpresent in the 
urrent virtual primary. For example, the 
omparison of a sequen
e toa virtual primary may 
ontain a mat
hing region, followed by a non-mat
hing region,followed by another mat
hing region. The non-mat
hing region possibly representsan exon not 
urrently in the virtual primary. This region 
ould be inserted into thevirtual primary and the boundaries 
ould be noted as exon boundaries. The resultingvirtual primary 
reated by this type of pro
edure will 
ontain all of the exons presentin a 
luster, but they may not be in the order that they o

ur in the genomi
 sequen
e.7.1.2 With Genomi
 Sequen
eNow that the genomes of several organisms have been 
ompletely sequen
ed,the is tremendous opportunity to use genomi
 sequen
e along with 
lustering. Thisinformation 
an be used to resolve ambiguous exon orderings and verify exon bound-aries. For example, the virtual primary of a 
luster may 
ontain four identi�ed exons,labeled A, B, C, and D. One trans
ript in the 
luster may be spli
ed as ABD. Anothertrans
ript in the 
luster may be spli
ed as ACD. Given these observations only, thevirtual primary 
ould be represented as ABCD or ACBD. Without genomi
 sequen
e,the order of exons B and C is ambiguous. The genomi
 sequen
e provides a means



76to resolve the order of these exons. One possible approa
h would be to take a 
lustervirtual primary and �nd the region of the genome that 
ontains it using a programsu
h as BLAST [3℄. This region 
ould then be used to resolve any ambiguous exonorderings. 7.2 Con�rming Gene Predi
tionsThe exons identi�ed by UI
luster in the virtual primaries 
an be usefulfor verifying the a

ura
y of gene predi
tion programs su
h as GenS
an [7℄ andGRAIL [14℄. Gene predi
tion programs are based on generalized models of genesand 
an often make mis-predi
tions. The empiri
al observation of an mRNA tran-s
ript veri�es that a predi
ted gene a
tually exists and that a parti
ular trans
riptof that gene is truly expressed (i.e., it is a spli
e form that 
an be produ
ed duringtrans
ription). Additionally, the exon boundaries identi�ed in the virtual primaryverify that the predi
ted exon boundaries are 
orre
t.7.3 Manual CurationA high quality UniGene index requires human intervention to resolve ambigu-ities that arise during automated 
lustering. NCBI's UniGene indi
es, for example,are 
urated and updated by a human operator as new information be
omes available.This produ
es a more a

urate 
lustering and a better estimate of the number ofgenes dis
overed.UI
luster's in
remental 
lustering 
apability 
ould provide similar 
apabilitiesby 
arrying 
uration de
isions through 
lustering iterations. However, there are 
ur-



77rently no user-friendly tools available to fa
ilitate this. Ideally, su
h an appli
ationwould in
orporate all information output by the program in
luding the mat
h infor-mation, the extended sear
h data, and the virtual primaries. Additionally, outsideinformation su
h as genomi
 sequen
e and annotations 
ould be in
orporated. Thisinformation 
ould all be 
ombined to allow a human operator to resolve ambiguoussituations and �x errors dis
overed in the 
lustering results. Additional tools su
h asBLAST, phrap, and GenS
an 
ould be sele
tively used by a human operator to makemore informed 
uration de
isions.A 
luster viewer has been implemented by the author during the 
ourse ofdeveloping UI
luster to better visualize the 
omposition of 
lusters. This tool,written in Java [16℄ and shown in �gure 7.1, 
ould be extended to perform the featuresdis
ussed in this se
tion. The output of the program might be a �le 
ontaining
uration de
isions that 
an be input into UI
luster when an in
remental 
lusteringis being performed. UI
luster would apply these de
isions before 
lustering any newsequen
es. 7.4 Cluster MergingIf an input sequen
e is found to be similar to more than one 
luster primary,this provides eviden
e that the mat
hed 
lusters should possibly be merged. However,merging 
lusters automati
ally due to linkage by only a single sequen
e is probably notthe approa
h to take. The 
luster 
uration tool (dis
ussed in se
tion 7.3) 
ould presentsu
h 
ases to an expert biologist, who 
ould then de
ide if the identi�ed 
lusters
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Figure 7.1: Cluster Viewershould be merged. Alternatively, 
lusters that are linked by multiple input sequen
esmight be automati
ally merged by UI
luster. A threshold for the minimum numberof input sequen
es linking two 
lusters before they are automati
ally merged 
ouldbe a parameter spe
i�ed by the user at run-time. Merging 
lusters 
ompli
ates theparallelization approa
h that has been utilized in UI
luster 3.0 sin
e 
lusters mayneed to be moved between 
ompute nodes. A possible alternative approa
h is touse the in
remental 
lustering 
apabilities of the appli
ation to iteratively 
luster the



79virtual primaries. If two virtual primaries are found to be similar, then the 
lustersthat they represent 
ould possibly be merged. After several iterations, steady statewill be rea
hed and no additional 
lusters will be merged.7.5 Long Trans
ribed Sequen
esThe hashing te
hniques that we have employed are most useful for short ESTs(400{1000bp). The approa
h is also suÆ
ient for full length 
DNA sequen
es (1000{5000bp) and other long trans
ribed sequen
es. However, performan
e is degraded sig-ni�
antly when 
lustering su
h sequen
es. This is thought to be due to the in
reasedprobability of �nding mat
hing hashes between longer sequen
es. Additionally, theprobability of multiple hash mat
hes being widely separated is greater. This redu
esthe e�e
tiveness of the thresholding s
heme we have used (dis
ussed in se
tion 5.3.1).A possible solution to this problem is splitting long sequen
es into smaller, overlappingwindows (e.g., an 5,000bp sequen
e 
ould be split into 9 1000bp windows, where ea
hsu

essive window overlaps the previous window by 500bp). S
oreMat
h would onlybe 
alled when the user's � threshold is met for a given window (see se
tion 5.3.1).The sequen
e 
omparison would start at the lo
ations of the mat
hing windows inboth sequen
es but the identi�ed mat
h may extend beyond the boundaries of thesewindows in the original sequen
es. The window size and degree of overlap should beparameters that are spe
i�ed by the user at run-time. Implementing this fun
tional-ity has the potential to improve the performan
e of the program signi�
antly when
lustering full length 
DNA sequen
es.



807.6 Automati
 Cal
ulation of � 0 and �UI
luster 
ould be made more user friendly by automati
ally 
al
ulatingappropriate values for � 0 and � for a spe
i�ed similarity 
riteria. This would requireobtaining the total amount of memory available and 
hoosing � 0 a

ordingly. It shouldbe noted that the value of � 0 that most 
losely approximates the performan
e obtainedby the value 
al
ulated by equation 5.3 will di�er depending on the size and noveltyof the data set being 
lustered and the similarity 
riteria used. Additionally, the usermay wish to obtain better performan
e by 
hoosing a higher � threshold than that
al
ulated by equation 5.4, knowing that some sequen
e similarities may be missed.Therefore, one approa
h to automati
ally 
al
ulating these values would be to givethe user several � 0 and � 
ombinations to 
hoose from depending what his or her goalsare and the type of data set being 
lustered.7.7 ExtendMat
h ImprovementsThe approa
h 
urrently used by the ExtendMat
h fun
tion (see se
tion 5.1.2.2)does not determine the end of a mat
hing region with enough a

ura
y to be usefulfor generating the virtual primaries. This is why the use of bl2seq was ne
essaryfor the virtual primary generation feature (where determining overlaps a

urately isimportant). A member of our laboratory is 
urrently working on an improved versionof ExtendMat
h that will be in
orporated in the next release of UI
luster.
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APPENDIXUICLUSTER 3.0 SOURCE CODEA.1 Header FilesA.1.1 ui
luster.h/***************************************************************************ui
luster.h-----------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#define NEW(TYPE) (TYPE *)emallo
(sizeof(TYPE))enum {MAXFNAME = 100,/* max filename length in 
hars */MAXPRE = 100,/* max num of previously 
lustered files */MAXSNAME = 40,/* maximum sequen
e name */MAXSLEN = 2000000,/* maximum sequen
e length */FORWARD = 1,/* indi
ates seq in forward dire
tion */REVCOMP = 2,/* indi
ates seq in reverse 
ompliment dir */NBASESONLINE = 70,/* num of bases to print per line */MAXLINE = 200000,/* maximum length of any line */A = 0,C = 1,G = 2,T = 3,SUCCESS = 1,FAILURE = 0,TRUE = 1,FALSE = 0,FAILEDHASH = -1,/* indi
ates that no hash 
ould be generated */NOHIT = 0,/* indi
ates no similar 
luster was found */NO_MORE_SEQS = -1,/* indi
ates that there are no more seqs ininput file */GOOD_SEQ = 0,/* indi
ates that input sequen
e is not areje
t */REJECT_SEQ = 1,/* indi
ates that input sequen
e is a reje
t */INTERNAL = 0,BOTHEXT = 1,TAILEXT = 2,FRONTEXT = 3,PROBLEM = 4,};typedef stru
t Se
ondary Se
ondary;stru
t Se
ondary {
har *name; /* name of se
ondary sequen
e */
har *seq; /* sequen
e string */double s
ore; /* s
ore of se
ondary (100 means perfe
tmat
h) */int iP; /* mat
h start index in primary */



82int iS; /* mat
h start index in se
ondary */int mat
hLen; /* mat
h length in number of bases */int dir; /* dire
tion of mat
h. FORWARD or REVCOMP */int tovp; /* how this seq aligned to the vp */Se
ondary *next; /* Se
ondary in list */};typedef stru
t Primary Primary;stru
t Primary {int 
lusID; /* 
luster ID of this primary */
har *name; /* name of primary sequen
e */
har *seq; /* sequen
e string */int *hashes; /* hash array for sequen
e string */int *indexes; /* index array for hash positions in seq */int nHashes; /* number of hashes */int nTou
hed; /* used for sea
hing -- num times thisprimary has been examined */int nSe
ondaries; /* number of se
ondaries for this primary */Se
ondary *headS; /* pointer to the head se
ondary */Primary *nextCP; /* used for sear
hing -- next primary in
andidate list */Primary *next; /* Primary in list *//* virtual primary related variables */
har *vp; /* virtual primary */int vpLen; /* 
ur len of the vp */int maxvpLen; /* max length of the vp */int nBothExt; /* num se
ondaries extending vp on front andtail */int nFrontExt; /* num se
ondaries extending vp on front */int nTailExt; /* num se
ondaries extending vp on tail */int nInternal; /* num se
ondaries totally 
ontained in vp */int nProblems; /* num se
ondaries not hitting well to vp */int tovp; /* how this seq aligned to the vp */}; A.1.2 
luster.h/***************************************************************************
luster.h---------------begin : Sun De
 12 1999author : Kevin Pedretti, Tom Casavantemail : pedretti�eng.uiowa.edu***************************************************************************/typedef stru
t GHTEntry GHTEntry;typedef GHTEntry *GHTEntry_p;stru
t GHTEntry {Primary *primary; /* pointer to the primary for this entry */GHTEntry *next; /* GHTEntry in list */};typedef stru
t Hit_str Hit;typedef Hit *Hit_p;stru
t Hit_str {int 
lusID; /* the 
lusID hit */int s
ore; /* the s
ore of the hit */int dir; /* dire
tion of the hit */};void 
luster(int, int, FILE *, FILE *, Options, Primary **, Primary *,int *, int *, int *, int *, int *, int *, int *, int *);void writeClusters(FILE *, Primary *, int, int *, 
har *[℄, int[℄, int,



83int);void addPrimary(int, FASTASeq *, Primary **, Primary **,int[℄, int[℄, int, GHTEntry_p[℄, int);void addSe
ondary(FASTASeq *, Primary *,int, int, int, int, int,int, int, GHTEntry_p[℄, int[℄, int[℄, int,Options, int *, int *, int *);void addtoGHT(GHTEntry_p *, Primary *, int);void remfromGHT(GHTEntry_p *, Primary *, int);int hashSeq(
har *, int, int, int, int[℄, int[℄);int 
ompareSeqs(int, int,Primary *, 
har *,int *, int *, int,int, int, int,int *, int *, int, int, int *, int *, int *);void sortHitList(Hit_p hits, int nHits);A.1.3 
ompare.h/***************************************************************************
ompare.h---------------begin : Mon De
 13 1999author : Tom Casavant - modified by Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/int S
oreMat
h(
har *strPattern, int strPatternIndex,
har *strSubje
t, int strSubje
tIndex,int iLengthToMat
h,int iWrongLimit, int iGapLimit, int iWrongOrGapLimit,int iWrongPenalty, int iGapPenalty,int iRe
ursiveFlag,int *nWrong_p, int *nMissing_p, int *nInserted_p);void extendMat
h(
har *pSeq, 
har *
Seq,int topS
ore, int lengthToMat
h, int hashSize,int radix, int skip, 
har maskedChar,int wrongLimit, int gapLimit, int wrongOrGapLimit,int topPIndex, int topCIndex,int wrongPenalty, int gapPenalty,int *totalErrors, int *bestLength); A.1.4 fasta.h/***************************************************************************fasta.h-------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/typedef stru
t FASTASeq FASTASeq;stru
t FASTASeq {
har name[MAXSNAME℄; /* name of sequen
e */
har *seq; /* sequen
e string */FASTASeq *next; /* FASTASeq in list */



84};void readSeqs(FILE *, FILE *, int, FASTASeq **, int *, int *);int readSeq(FILE *, FASTASeq *, FILE *, int, int);void printSeq(FILE *, 
har *, int, int);A.1.5 in
remental.h/***************************************************************************in
remental.h-------------------begin : Wed Jan 12 2000author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/int readClusFiles(
har *
, Primary **, Primary **, 
har *[℄, int[℄);int parseClusFile(FILE *, Primary **, Primary **, int *, int *);A.1.6 memory.h/***************************************************************************memory.h--------------begin : Tue De
 14 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/enum {GHTBLOCK = 1000000,/* blo
k size 'GHTEntry' preallo
ations */PRIMEBLOCK = 300000,/* blo
k size for 'Primary' preallo
ations */SECNDBLOCK = 1000000,/* blo
k size for 'Se
ondary' preallo
ations */FASTABLOCK = 1000000,/* blo
k size for 'FASTASeq' preallo
ations */SEQBLOCK = 1000000,/* blo
k size for prallo
ations for sequen
edata */};GHTEntry *getGHTEntry();Primary *getPrimary();Se
ondary *getSe
ondary();FASTASeq *getFASTASeq(); A.1.7 options.h/***************************************************************************options.h---------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************//* Stru
ture 
ontaining all user-defined parameters. */typedef stru
t Options Options;stru
t Options {
har inFile[MAXFNAME℄;
har preCFile[MAXFNAME℄;int rejCrit;int hashSize;int startSkip;int endSkip;int lenToMat
h;int errLimit;
har maskChar;



85int repi
k;int tryRevC;int hitThresh;int wrongPen;int gapPen;int keepGoing;int vPrimary;};/* Called from main to get user-defined parameters from the 
ommand-line */int getopts(Options *, int, 
har **);/* Prints out the user-define parameters parsed from the 
omman-line */void printopts(FILE *, Options);/* print 
ommand-line arguments and usage instru
tions */void printUsage(); A.1.8 qsort.h/***************************************************************************qsort.h-------------begin : Mon De
 13 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/enum {M = 7,/* threshold list size for abandoning qsort */NSTACK = 50,/* sta
k size, may have to in
rease */NR_END = 1,/* sentinel */};#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;#define FREE_ARG 
har*void nrerror(
har error_text[℄);int *ive
tor(long nl, long nh);void free_ive
tor(int *v, long nl, long nh);/* Do a qui
k sort on data[℄ while maintaining 
onsistan
y with index[℄.NOTE: This sort routine sorts data[1..n℄ NOT data[0..n-1℄.The 
aller should a

ount for this.*/void qsortWIndx(unsigned long n, int data[℄, int index[℄);A.1.9 utils.h/***************************************************************************utils.h-------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#define min2(X, Y) ((X) < (Y) ? (X) : (Y))#define max2(X, Y) ((X) > (Y) ? (X) : (Y))void setprogname(
har *str);
har *progname(void);void setversion(
har *str);
har *getversion(void);extern void eprintf(
har *, ...);



86extern void wprintf(
har *, ...);extern 
har *estrdup(
har *);extern void *emallo
(size_t);extern void *e
allo
(size_t, size_t);extern void *ereallo
(void *, size_t);extern 
har *progname(void);extern void setprogname(
har *);int nmallo
s();
har *
homp(
har *);int 
ountBases(
har *);int ipower(int, int);void revComp(
har *in, int len);
har *printTime(time_t, time_t); A.1.10 bl2seq.h/***************************************************************************bl2seq.h - des
ription-------------------begin : Sun Mar 18 2001
opyright : (C) 2001 by Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************//**************************************************************************** ** This program is free software; you 
an redistribute it and/or modify ** it under the terms of the GNU General Publi
 Li
ense as published by ** the Free Software Foundation; either version 2 of the Li
ense, or ** (at your option) any later version. ** ****************************************************************************/enum {BL2SEQ_MAXLINE = 1024,STATE_INIT = 0,STATE_STARTS = 1,STATE_LENS = 2,STATE_STRANDS = 3,PLUS = 0,MINUS = 1,PP = 0,PM = 1,MP = 2,MM = 3,};stru
t bl2seq_hit_str {int sb1; /* start base in sequen
e 1 */int sb2;int eb1; /* end base in sequen
e 1 */int eb2;int dir; /* dire
tion of hit */};typedef stru
t bl2seq_hit_str bl2seq_hit;void bl2seq(
har *seq1, int seq1Len, 
har *seq2, int seq2Len,bl2seq_hit * hits, int *nHits);int 
all_bl2seq(
har *seq1, 
har *seq2, 
har *out);A.2 Sour
e FilesA.2.1 main.
/***************************************************************************



87main.
 - UI
luster 
lustering program---------------------------------------begin : Sun De
 12 09:43:22 CST 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#ifdef HAVE_CONFIG_H#in
lude <
onfig.h>#endif#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <string.h>#in
lude <time.h>#in
lude "mpi.h"#in
lude "ui
luster.h"#in
lude "utils.h"#in
lude "options.h"#in
lude "fasta.h"#in
lude "
luster.h"#in
lude "in
remental.h"int main(int arg
, 
har *argv[℄){ int myRank; /* this pro
s rank in MPI_COMM_WORLD */int nPro
s; /* num pro
s in MPI_COMM_WORLD */time_t startTime; /* start time of program exe
ution */time_t stopTime1; /* stop time before writing output file */time_t stopTime2; /* stop top after writing output file */Options opts; /* Contains user 
onfigurable options */FASTASeq *inseqs = NULL; /* linked list of input sequen
es */Primary *primaries = NULL; /* linked list of primaries */Primary *tail = NULL; /* pointer to the last element in the primarylinked list */int nCF = 0; /* number of previously 
lustered files toread in */
har *inFiles[MAXPRE℄; /* the names of the input previously
lustered files */int div[MAXPRE℄; /* indexes to last primary of ea
hpre-
lustered file */
har outFN[MAXFNAME℄,/* output file name */rejFN[MAXFNAME℄,/* reje
t file name */logFN[MAXFNAME℄,/* log file name */orphanFN[MAXFNAME℄; /* orphan file name */FILE *fd_fasta,/* input FASTA file */*fd_out,/* output file 
ontaining 
lusters */*fd_rej,/* file 
ontaining reje
ted sequen
es */*fd_log,/* log file */*fd_orphan; /* file 
ontaining orphans */int nSeqs = 0,/* num of input sequen
es */nRej = 0,/* num of input seqs reje
ted */nPrime = 0,/* num primaries after 
lustering */nSe
nd = 0,/* num se
ondaries after 
lustering */nOrph = 0,/* num of orphans */nOrphE = 0,/* num orphan events */nReadptE = 0,/* num readopt events */nRepi
k = 0,/* num repi
k events */nMat
hRev = 0; /* num seq mat
hes in the REVCOMP dire
tion */int stat;int i;/* initialize MPI */MPI_Init(&arg
, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &myRank);



88MPI_Comm_size(MPI_COMM_WORLD, &nPro
s);/* re
ord the start time of 
lustering */startTime = time(NULL);setprogname("UI
luster");setversion("3.0.5");/* only the rank 0 pro
 outputs to s
reen */if (myRank == 0) {printf("\n%s %s\n", progname(), getversion());for (i = 0; i <= (strlen(progname()) + strlen(getversion())); i++) {printf("-");}printf("\n\n");}/* parse the 
ommand line */stat = getopts(&opts, arg
, argv);if (stat == FAILURE) {eprintf(" COULDN'T PARSE COMMAND LINE.");}if (myRank == 0) {printf("Running with %d pro
esses.\n", nPro
s);printopts(stdout, opts);}/* open in input file */fd_fasta = fopen(opts.inFile, "r");if (fd_fasta == NULL) {eprintf("
an't open %s:", opts.inFile);}/* build the name of this pro
s output file */if (nPro
s == 1) {sprintf(outFN, "%s.
lus", opts.inFile);} else {sprintf(outFN, "%s-%d.
lus", opts.inFile, myRank);}/* open the output file */fd_out = fopen(outFN, "w
");if (fd_out == NULL) {eprintf("
an't open %s", outFN);}/* only pro
ess 0 outputs reje
ts */if (myRank == 0) {sprintf(rejFN, "%s.rej", opts.inFile);/* open the reje
t file */fd_rej = fopen(rejFN, "w
");if (fd_rej == NULL)eprintf("
an't open %s", rejFN);}/* read in previously 
lustered file */if (str
mp(opts.preCFile, "none") != 0) {if (myRank == 0) {printf("\nReading previously 
lustered files...\n");}nCF = readClusFiles(opts.preCFile, &primaries, &tail, inFiles, div);}/* perform 
lustering */if (myRank == 0) {printf("\nBegin Clustering...\n");



89printf("\n *status given as .num_seqs_
lustered:num_new_
lusters.\n\n");}if (myRank == 0) {/* only the master output reje
ts to the reje
t file */
luster(myRank, nPro
s, fd_fasta, fd_rej, opts, &primaries, tail,&nPrime, &nSe
nd, &nRepi
k, &nOrphE, &nReadptE, &nMat
hRev,&nSeqs, &nRej);} else {/* set fd_rej to null so nothing is output to it */
luster(myRank, nPro
s, fd_fasta, NULL, opts, &primaries, tail,&nPrime, &nSe
nd, &nRepi
k, &nOrphE, &nReadptE, &nMat
hRev,&nSeqs, &nRej);}/* re
ord the time up until just after 
lustering */stopTime1 = time(NULL);/* finish up - write primaries to file and display summary stats */if (myRank == 0) {printf("\n\nWritting output...\n");}writeClusters(fd_out, primaries, NBASESONLINE, &nOrph, inFiles, div, nCF,opts.vPrimary);/* re
ord the stop time of the 
lustering */stopTime2 = time(NULL);if (myRank == 0) {printf("\n");printf("Total # Input: %7d\n", nSeqs);printf("Num Reje
ts: %7d\n", nRej);printf("# Seqs Clustered: %7d\n", nSeqs - nRej);printf("Num Clusters: %7d\n", nPrime);printf("Num Se
ondaries: %7d\n", nSe
nd);if (opts.repi
k) {printf("Num Repi
k Events: %7d\n", nRepi
k);printf("Num Orphan Events: %7d\n", nOrphE);printf("Num ReAdopt Events: %7d\n", nReadptE);if (nOrph > 0)printf("Total # Orphans: %7d\n", nOrph);}if (opts.tryRevC)printf("Num Mat
hed Rev: %7d\n", nMat
hRev);printf("Total # of mallo
s: %7d\n", nmallo
s());printf("Tot Elapsed time : %s\n", printTime(startTime, stopTime2));/* printf( "Output time : %s\n", printTime(stopTime1,stopTime2)); */}/* finish up */MPI_Finalize();return EXIT_SUCCESS;} A.2.2 
luster.
/***************************************************************************
luster.
 - routines to 
luster sequen
es-------------------------------------------begin : Sun De
 12 1999
opyright : Kevin Pedretti, Tom Casavantemail : pedretti�eng.uiowa.edu***************************************************************************/



90#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <string.h>#in
lude "mpi.h"#in
lude "ui
luster.h"#in
lude "utils.h"#in
lude "options.h"#in
lude "fasta.h"#in
lude "
luster.h"#in
lude "
ompare.h"#in
lude "qsort.h"#in
lude "memory.h"#in
lude "bl2seq.h"void 
luster(int myRank, int nPro
s, FILE * fd_fasta, FILE * fd_rej,Options opts, Primary ** head, Primary * tail, int *nPrime,int *nSe
nd, int *nRepi
k, int *nOrphE, int *nReadptE,int *nMat
hRev, int *nSeqs, int *nReje
ts){ Primary *
lhead; /* 
andidate list head */Primary *tmpP; /* temporary pointer to a Primary */FASTASeq *
urC; /* 
urrent 
andidate */Primary *
urP; /* 
urrent primary */GHTEntry_p *ght; /* global hash table */GHTEntry *tmp; /* temporary variable */int *
Hashes; /* hashes for 
ur */int *
Indexes; /* indexes for 
ur */int nhashes; /* num hashes for 
ur */
har revC[MAXSLEN℄; /* holds the reverse */int *
rHashes; /* hashes for rev
omp of 
ur */int *
rIndexes; /* hashes for rev
omp of 
ur */int nrhashes; /* num hashes for rev
omp of 
ur */int iter = 0;int hit; /* indi
ates if 
ur mat
hed any primaries */int status; /* stores return 
odes of fun
tion 
alls */int i;int stopSear
h; /* boolean indi
ating if the primary sear
hshould be stopped */stru
t {int s
ore;int rank;} myBestHit, bestHit;stru
t Hit_str allMyHits[10000℄;stru
t Hit_str allHits[10000℄;int 
lusID = 0;MPI_Datatype MPI_HIT;int *r
ounts;int *displs;int mat
hLen,/* initial mat
h length */extLen,/* extended mat
h length */nerrors; /* num errors in mat
h */int topP, topC, nwrong, nmiss, ninsert;int bestExtLen, bestTopP, bestTopC, bestHitDir, bestNErrors;Primary *bestP;FILE *hits; /* file 
ontaining list of 
andidates and theprimaries they mat
h */
har hitsName[MAXFNAME℄;int hitCount; /* the number of 
lusters an in
oming seqhits */
Hashes = (int *) emallo
(MAXSLEN * sizeof(int));
Indexes = (int *) emallo
(MAXSLEN * sizeof(int));
rHashes = (int *) emallo
(MAXSLEN * sizeof(int));
rIndexes = (int *) emallo
(MAXSLEN * sizeof(int));nhashes = nrhashes = 0;



91/* Define MPI_HIT datatype */MPI_Type_
ontiguous(3, MPI_INT, &MPI_HIT);MPI_Type_
ommit(&MPI_HIT);/* Allo
ate r
ounts and displs */if (opts.keepGoing && (myRank == 0)) {r
ounts = (int *) mallo
(nPro
s * sizeof(int));displs = (int *) mallo
(nPro
s * sizeof(int));}/* initialize memory for the global hash table */ght =(GHTEntry_p *) e
allo
(ipower(4, opts.hashSize), sizeof(GHTEntry_p));/* hash all of the already existing primaries */if (*head != NULL) {printf(" 
reating hashes for pre-existing primaries.\n");tmpP = *head;while (tmpP != NULL) {nhashes =hashSeq(tmpP->seq, opts.hashSize, opts.startSkip, opts.endSkip,
Hashes, 
Indexes);qsortWIndx((unsigned long) nhashes, 
Hashes - 1, 
Indexes - 1);tmpP->nHashes = nhashes;tmpP->hashes = (int *) emallo
(nhashes * sizeof(int));tmpP->indexes = (int *) emallo
(nhashes * sizeof(int));for (i = 0; i < nhashes; i++) {tmpP->hashes[i℄ = 
Hashes[i℄;tmpP->indexes[i℄ = 
Indexes[i℄;addtoGHT(ght, tmpP, 
Hashes[i℄);}tmpP = tmpP->next;}}/* open a file for the list of 
andidates and the primaries they mat
h */if (opts.keepGoing && (myRank == 0)) {str
py(hitsName, opts.inFile);str
at(hitsName, ".hits");hits = fopen(hitsName, "w");if (hits == NULL) {eprintf("
an't open %s: ", hitsName);}}/* allo
ate memory for 
urC */
urC = getFASTASeq();
urC->seq = (
har *) emallo
(MAXSLEN * sizeof(
har));/* 
luster ea
h input seq one by one... */status = readSeq(fd_fasta, 
urC, fd_rej, opts.rejCrit, *nReje
ts);while (status != NO_MORE_SEQS) {++(*nSeqs);if (status == REJECT_SEQ) {++(*nReje
ts);} else {if (myRank == 0) {if (iter % 100 == 0) {printf("%d:%d.", iter, *nPrime);fflush(stdout);}++iter;}



92if (opts.keepGoing && (myRank == 0)) {/* print the 
urrent 
andidate name to the hits file */fprintf(hits, "%s ", 
urC->name);}nhashes =hashSeq(
urC->seq, opts.hashSize, opts.startSkip, opts.endSkip,
Hashes, 
Indexes);qsortWIndx((unsigned long) nhashes, 
Hashes - 1, 
Indexes - 1);
lhead = NULL;hit = NOHIT;hitCount = 0;bestExtLen = 0;/* sear
h the GHT with the forward hashes */i = 0;stopSear
h = FALSE;while ((i < nhashes) && (stopSear
h != TRUE)) {if (
Hashes[i℄ != FAILEDHASH) {/* get the first link at entry i of the GHT */tmp = ght[
Hashes[i℄℄;while (tmp != NULL) {
urP = tmp->primary;/* only 
he
k primary when it exa
tly hits the threshold *//* prevents 
he
king it more than on
e if keepGoing flag is on */if (
urP->nTou
hed == opts.hitThresh) {mat
hLen =
ompareSeqs(opts.lenToMat
h,opts.lenToMat
h - opts.errLimit, 
urP,
urC->seq, 
Hashes, 
Indexes, nhashes,opts.errLimit, opts.errLimit, opts.errLimit,&topP, &topC, opts.wrongPen, opts.gapPen,&nwrong, &nmiss, &ninsert);if (mat
hLen >= (opts.lenToMat
h - opts.errLimit)) {extendMat
h(
urP->seq, 
urC->seq,mat
hLen, opts.lenToMat
h, opts.hashSize, 4,opts.startSkip, opts.maskChar, opts.errLimit,opts.errLimit, opts.errLimit, topP, topC,opts.wrongPen, opts.gapPen, &nerrors, &extLen);hit = FORWARD;/* add the hit to the hit list */allMyHits[hitCount℄.
lusID = 
urP->
lusID;allMyHits[hitCount℄.s
ore = extLen;allMyHits[hitCount℄.dir = FORWARD;++hitCount;/* see if this is the best hit so far */if (extLen > bestExtLen) {bestExtLen = extLen;bestTopP = topP;bestTopC = topC;bestHitDir = FORWARD;bestNErrors = nerrors;bestP = 
urP;}/* stop the sear
h if the keepGoing flag is off */if (opts.keepGoing == 0) {stopSear
h = TRUE;} }



93}if (
urP->nTou
hed == 0) {/* insert primary at head of 
andidate list */
urP->nextCP = 
lhead;
lhead = 
urP;}++(
urP->nTou
hed);tmp = tmp->next;} /* end while (tmp != NULL) */} /* end if (
Hashes[i℄ != FAILEDHASH) */++i; /* move on to next hash */} /* end while ((i < nhashes) && (stopSear
h !=TRUE)) *//* 
he
k in the reverse dire
tion if the tryRevC option is on andeither the extended sear
h option is on or no hit has been found yet */if (((opts.keepGoing == 1) && (opts.tryRevC == 1))|| ((hit == NOHIT) && (opts.tryRevC == 1))) {/* reset 
andidate list, zeroing tou
h
ounts */
urP = 
lhead;while (
urP != NULL) {
urP->nTou
hed = 0;
urP = 
urP->nextCP;}
lhead = NULL;/* reverse 
ompliment the input sequen
e */str
py(revC, 
urC->seq);revComp(revC, strlen(revC));/* generate and sort hashes for the reverse 
omplement */nrhashes =hashSeq(revC, opts.hashSize, opts.startSkip, opts.endSkip,
rHashes, 
rIndexes);qsortWIndx((unsigned long) nrhashes, 
rHashes - 1, 
rIndexes - 1);/* sear
h the GHT with the reverse hashes */i = 0;stopSear
h = FALSE;while ((i < nrhashes) && (stopSear
h != TRUE)) {if (
rHashes[i℄ != FAILEDHASH) {/* get the first link at entry i of the GHT */tmp = ght[
rHashes[i℄℄;while (tmp != NULL) {
urP = tmp->primary;/* only 
he
k primary when it exa
tly hits the threshold *//* prevents 
he
king it more than on
e if keepGoing flag is on */if (
urP->nTou
hed == opts.hitThresh) {mat
hLen =
ompareSeqs(opts.lenToMat
h,opts.lenToMat
h - opts.errLimit, 
urP,revC, 
rHashes, 
rIndexes, nrhashes,opts.errLimit, opts.errLimit,opts.errLimit, &topP, &topC, opts.wrongPen,opts.gapPen, &nwrong, &nmiss, &ninsert);if (mat
hLen >= (opts.lenToMat
h - opts.errLimit)) {extendMat
h(
urP->seq, revC,mat
hLen, opts.lenToMat
h, opts.hashSize, 4,opts.startSkip, opts.maskChar, opts.errLimit,opts.errLimit, opts.errLimit, topP, topC,opts.wrongPen, opts.gapPen, &nerrors,&extLen);



94hit = REVCOMP;/* add the hit to the hit list */allMyHits[hitCount℄.
lusID = 
urP->
lusID;allMyHits[hitCount℄.s
ore = extLen;allMyHits[hitCount℄.dir = REVCOMP;++hitCount;/* see if this is the best hit so far */if (extLen > bestExtLen) {bestExtLen = extLen;bestTopP = topP;bestTopC = topC;bestHitDir = REVCOMP;bestNErrors = nerrors;bestP = 
urP;}/* stop the sear
h if the keepGoing flag is off */if (opts.keepGoing == 0) {stopSear
h = TRUE;}} }if (
urP->nTou
hed == 0) {/* insert primary at head of 
andidate list */
urP->nextCP = 
lhead;
lhead = 
urP;}++(
urP->nTou
hed);tmp = tmp->next;} /* end while (tmp != NULL) */} /* end if (
rHashes[i℄ != FAILEDHASH) */++i; /* move on to next hash */} /* end while ((i < nrhashes) && (stopSear
h!= TRUE)) */}/* figure out what my best hit is */if (hitCount > 0) {/* sort the hit list by s
ore */sortHitList(allMyHits, hitCount);/* best hit will be at position 0 */myBestHit.s
ore = allMyHits[0℄.s
ore;} else {myBestHit.s
ore = 0;}myBestHit.rank = myRank;/* 
ommuni
ate the best hit to all pro
s */MPI_Allredu
e(&myBestHit, &bestHit, 1, MPI_2INT, MPI_MAXLOC,MPI_COMM_WORLD);if (bestHit.s
ore == 0) { /* 
ur is a new primary */++(*nPrime);/* 
he
k if this pro
 should get assigned this 
luster */if ((*nPrime % nPro
s) == myRank) {addPrimary(
lusID, 
urC, head, &tail, 
Hashes, 
Indexes, nhashes,ght, opts.vPrimary);++
lusID;



95}/* master pro
 writes to hits file if keepGoing flag is on */if ((myRank == 0) && (opts.keepGoing == 1)) {fprintf(hits, "NO HITS\n");} } else { /* 
ur gets added somepla
e */++(*nSe
nd);/* gather a list of all hits to the master pro
 if the keepGoing flagis on */if (opts.keepGoing) {/* gather list of all hits to root node to put in the hits file */MPI_Gather(&hitCount, 1, MPI_INT, r
ounts, 1, MPI_INT, 0,MPI_COMM_WORLD);if (myRank == 0) {displs[0℄ = 0;for (i = 1; i < nPro
s; i++) {displs[i℄ = displs[i - 1℄ + r
ounts[i - 1℄;}}MPI_Gatherv(allMyHits, hitCount, MPI_HIT, allHits, r
ounts,displs, MPI_HIT, 0, MPI_COMM_WORLD);/* only master pro
 writes to the file */if (myRank == 0) {int nAllHits = displs[nPro
s - 1℄ + r
ounts[nPro
s - 1℄;/* sort the hit list before writing it */sortHitList(allHits, nAllHits);for (i = 0; i < nAllHits; i++) {fprintf(hits, "%d.%d:", allHits[i℄.
lusID, allHits[i℄.s
ore);if (allHits[i℄.dir == FORWARD) {fprintf(hits, "f ");} else {fprintf(hits, "r ");}}fprintf(hits, "\n");}}/* add the input sequen
e to the 
luster it hit the best */if (bestHit.rank == myRank) {addSe
ondary(
urC, bestP, bestTopP, bestTopC, bestExtLen,bestNErrors, bestHitDir, opts.repi
k, opts.vPrimary,ght, 
Hashes, 
Indexes, nhashes, opts, nRepi
k,nOrphE, nReadptE);// addSe
ondary(
urC, 
urP, topP, topC, extLen, nerrors, hit,// opts.repi
k, opts.vPrimary, ght, 
Hashes, 
Indexes, nhashes,// opts,// nRepi
k, nOrphE, nReadptE);} }/* Reset 
andidate list */
urP = 
lhead;while (
urP != NULL) {
urP->nTou
hed = 0;
urP = 
urP->nextCP;}} /* end if (status != REJECT_SEQ) */



96/* read the next input sequen
e */status = readSeq(fd_fasta, 
urC, fd_rej, opts.rejCrit, *nReje
ts);} /* end main 
lustering loop */}void addPrimary(int 
lusID, FASTASeq * new, Primary ** head,Primary ** tail, int hashes[℄, int indexes[℄, int nhashes,GHTEntry_p ght[℄, int vPrimary){ int i;Primary *p = getPrimary();p->
lusID = 
lusID;p->name = (
har *) emallo
((strlen(new->name) + 1) * sizeof(
har));p->seq = (
har *) emallo
((strlen(new->seq) + 1) * sizeof(
har));str
py(p->name, new->name);str
py(p->seq, new->seq);/* only do the following only if virtual primary option is enabled */if (vPrimary == 1) {/* vp starts out as seq of first sequen
e added */p->vp = (
har *) emallo
((strlen(p->seq) * 2) + 1);str
py(p->vp, p->seq);p->vpLen = strlen(p->seq);p->maxvpLen = strlen(p->seq) * 2;p->nFrontExt = 0;p->nTailExt = 0;p->nBothExt = 0;p->nInternal = 0;p->nProblems = 0;p->tovp = INTERNAL;}p->hashes = (int *) emallo
(nhashes * sizeof(int));p->indexes = (int *) emallo
(nhashes * sizeof(int));/* enter the hashes into the GHT */for (i = 0; i < nhashes; i++) {p->hashes[i℄ = hashes[i℄;p->indexes[i℄ = indexes[i℄;addtoGHT(ght, p, hashes[i℄);}/* initialize variables in primary stru
ture */p->nHashes = nhashes;p->nSe
ondaries = 0;p->nTou
hed = 0;p->headS = NULL;p->nextCP = NULL;p->next = NULL;/* Add primary to the main primary list */if (*head != NULL) {(*tail)->next = p;*tail = p;} else {*head = *tail = p;}}void addSe
ondary(FASTASeq * new, Primary * p,int iP, int iS, int mat
hLen, int errors, int dir,int repi
k, int vPrimary, GHTEntry_p ght[℄, int hashes[℄,int indexes[℄, int nhashes, Options opts, int *nRepi
k,



97int *nOrphanE, int *nReadptE){ Se
ondary *tmpS;Se
ondary *s = getSe
ondary();int lenOld, lenNew;int i;
har strTmp[MAXSLEN℄;int nlhashes;int *
Hashes;int *
Indexes;int lmat
hLen;int topP, topC, nwrong, nmiss, ninsert;int nerrors;int extLen;bl2seq_hit bl2Hits[1000℄;int nbl2Hits;++(p->nSe
ondaries);s->next = p->headS;p->headS = s;/* determine if the se
ondary should be
ome the primary for the 
luster */if (repi
k) {lenOld = 
ountBases(p->seq);lenNew = 
ountBases(new->seq);}if (lenNew > lenOld) {/* repi
k */++(*nRepi
k);s->name = p->name;s->seq = p->seq;s->iP = 0;s->iS = 0;s->mat
hLen = 0;s->s
ore = 0.0;s->dir = FORWARD;p->name = (
har *) emallo
((strlen(new->name) + 1) * sizeof(
har));p->seq = (
har *) emallo
((strlen(new->seq) + 1) * sizeof(
har));str
py(p->name, new->name);str
py(p->seq, new->seq);if (vPrimary == 0) {/* remove old primary from ght */for (i = 0; i < p->nHashes; i++) {remfromGHT(ght, p, p->hashes[i℄);}free(p->hashes);free(p->indexes);/* add the new primaries hashes to the ght */p->hashes = (int *) emallo
(nhashes * sizeof(int));p->indexes = (int *) emallo
(nhashes * sizeof(int));for (i = 0; i < nhashes; i++) {p->hashes[i℄ = hashes[i℄;p->indexes[i℄ = indexes[i℄;addtoGHT(ght, p, hashes[i℄);}p->nHashes = nhashes;/* re
luster all of the se
ondaries */
Hashes = (int *) emallo
(MAXSLEN * sizeof(int));
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Indexes = (int *) emallo
(MAXSLEN * sizeof(int));tmpS = p->headS;for (i = 0; i < p->nSe
ondaries; i++) {if (tmpS->dir == FORWARD) {str
py(strTmp, tmpS->seq);} else {str
py(strTmp, tmpS->seq);revComp(strTmp, strlen(strTmp));}nlhashes =hashSeq(strTmp, opts.hashSize, opts.startSkip, opts.endSkip,
Hashes, 
Indexes);qsortWIndx((unsigned long) nlhashes, 
Hashes - 1, 
Indexes - 1);mat
hLen = topP = topC = 0;nwrong = nmiss = ninsert = 0;lmat
hLen =
ompareSeqs(opts.lenToMat
h, opts.lenToMat
h - opts.errLimit,p, strTmp, 
Hashes, 
Indexes, nlhashes,opts.errLimit, opts.errLimit, opts.errLimit, &topP,&topC, opts.wrongPen, opts.gapPen, &nwrong, &nmiss,&ninsert);if (lmat
hLen >= (opts.lenToMat
h - opts.errLimit)) {nerrors = extLen = 0;extendMat
h(p->seq, strTmp,lmat
hLen, opts.lenToMat
h, opts.hashSize, 4,opts.startSkip, opts.maskChar, opts.errLimit,opts.errLimit, opts.errLimit, topP, topC,opts.wrongPen, opts.gapPen, &nerrors, &extLen);/* Update the mat
h info */if ((tmpS->s
ore == 0) && (i != 0))++(*nReadptE);tmpS->iP = topP;tmpS->iS = topC;tmpS->s
ore =(((double) (lmat
hLen - nerrors)) / lmat
hLen) * 100.0;tmpS->mat
hLen = extLen;} else {++(*nOrphanE);tmpS->iP = 0;tmpS->iS = 0;tmpS->s
ore = 0;tmpS->mat
hLen = 0;}tmpS = tmpS->next;}free(
Hashes);free(
Indexes);} /* end if (vPrimary == 0) */} else {/* no repi
k, add se
ondary */s->name = (
har *) emallo
((strlen(new->name) + 1) * sizeof(
har));s->seq = (
har *) emallo
((strlen(new->seq) + 1) * sizeof(
har));str
py(s->name, new->name);str
py(s->seq, new->seq);s->iP = iP;if (dir == FORWARD)s->iS = iS;



99elses->iS = strlen(s->seq) - iS;s->mat
hLen = mat
hLen;if (dir == REVCOMP)s->mat
hLen *= -1;s->s
ore = (((double) (mat
hLen - errors)) / mat
hLen) * 100.0;s->dir = dir;}/* Try to extend the vp */if (vPrimary == 1) {int seqLen = strlen(s->seq);int lag = 4; /* a

eptable error for overlaps */int maxMultiHit = 40; /* maximum length in bases of non-best hitsbefore * sequen
e is 
onsidered a"problem" */int minBestHitLen = 50; /* minimum length of a best hit in order toextend vp */int done = FALSE;int ext = FALSE;/* 
all bl2seq. returns sorted hit list and number of hits */bl2seq(p->vp, p->vpLen, s->seq, seqLen, bl2Hits, &nbl2Hits);if (nbl2Hits > 0) {if (nbl2Hits > 1) {/* There was more than one hit */int lenOf2Hit = bl2Hits[1℄.eb1 - bl2Hits[1℄.sb1;if (lenOf2Hit > maxMultiHit) {++(p->nProblems);done = TRUE;} }if (done == FALSE) {/* see if the vp 
an be extended *//* best hit will be in bl2Hits[0℄ */int sb1 = bl2Hits[0℄.sb1; /* start base in vp */int sb2 = bl2Hits[0℄.sb2; /* start base in new seq */int eb1 = bl2Hits[0℄.eb1; /* end base in vp */int eb2 = bl2Hits[0℄.eb2; /* end base in new seq */int dir = bl2Hits[0℄.dir; /* dire
tion of hit -- see bl2seq.
 */int len1 = p->vpLen; /* 
urrent length of the vp */int len2 = seqLen; /* length of the new sequen
e */int lenOfHit = eb1 - sb1; /* len of the best hit */int ff1 = sb1; /* front fringe */int ef1 = len1 - eb1 - 1; /* end fringe */int ff2 = sb2;int ef2 = len2 - eb2 - 1;if ((lenOfHit > minBestHitLen) && (dir == PP)) {/* Che
k for internal hit */if ((ff2 < lag) && (ef2 < lag)) {/* hit identified as internal */++(p->nInternal);} else if ((ff1 < lag) && (ef1 < lag) && (ff2 > lag)&& (ef2 > lag)) {/* hit identified to extend vp on both front and end */++(p->nBothExt);ext = TRUE;if (len2 > p->maxvpLen) {free(p->vp);



100p->maxvpLen = len2 * 2;p->vp = (
har *) emallo
(p->maxvpLen);}p->vpLen = len2;/* new sequen
e be
omes new vp */str
py(p->vp, s->seq);} else if ((ef1 < lag) && (ff2 < lag) && (ef2 > lag)) {/* hit identified to extend tail of vp */int sb; /* base to start 
opying at */int lenApp; /* length of appended region */++(p->nTailExt);ext = TRUE;sb = eb2 + (len1 - eb1);lenApp = strlen(s->seq + sb);/* allo
ate more spa
e for vp if ne
essary */if (len1 + lenApp) {p->maxvpLen = (len1 + lenApp) * 2;p->vp = ereallo
(p->vp, p->maxvpLen);}str
py(p->vp + len1, s->seq + (eb2 + (len1 - eb1)));} else if ((ff1 < lag) && (ef2 < lag) && (ff2 > lag)) {/* hit identified to extend front of vp */int sb; /* base to start 
opying at */int lenApp; /* length of appended region */++(p->nFrontExt);ext = TRUE;sb = sb2 - sb1;lenApp = sb2 - sb1;/* allo
ate more spa
e for vp if ne
essary */if (len1 + lenApp) {p->maxvpLen = (len1 + lenApp) * 2;p->vp = ereallo
(p->vp, p->maxvpLen);}/* shift 
urrent vp to right */memmove(p->vp + lenApp, p->vp, len1 + 1);mem
py(p->vp, s->seq, lenApp);} else {/* problem hit */++(p->nProblems);}/* if extention was made, remove old hashes from GHT * and add newhashes to it */if (ext == TRUE) {int *newHashes = (int *) emallo
(MAXSLEN * sizeof(int));int *newIndexes = (int *) emallo
(MAXSLEN * sizeof(int));/* remove old primary from ght */for (i = 0; i < p->nHashes; i++) {remfromGHT(ght, p, p->hashes[i℄);}free(p->hashes);free(p->indexes);/* add the new vps hashes to the ght */p->nHashes =hashSeq(p->vp, opts.hashSize, opts.startSkip, opts.endSkip,newHashes, newIndexes);qsortWIndx((unsigned long) p->nHashes, newHashes - 1,newIndexes - 1);p->hashes = (int *) emallo
(p->nHashes * sizeof(int));



101p->indexes = (int *) emallo
(p->nHashes * sizeof(int));for (i = 0; i < (p->nHashes); i++) {p->hashes[i℄ = newHashes[i℄;p->indexes[i℄ = newIndexes[i℄;addtoGHT(ght, p, newHashes[i℄);}free(newHashes);free(newIndexes);}} else {printf("best hit dir = %d\n", dir);printf("len of hit = %d\n", lenOfHit);} }} else {/* There were no bl2seq hits */printf("THIS SHOULD NEVER HAPPEN\n");}}}void addtoGHT(GHTEntry_p * ght, Primary * primary, int hash){ GHTEntry *tmp;if (hash != FAILEDHASH) {if (ght[hash℄ != NULL) {if (ght[hash℄->primary != primary) {/* The primary isn't in the list. Always insert at head. */tmp = getGHTEntry();tmp->primary = primary;tmp->next = ght[hash℄;ght[hash℄ = tmp;}} else {ght[hash℄ = getGHTEntry();ght[hash℄->primary = primary;ght[hash℄->next = NULL;}}}void remfromGHT(GHTEntry_p * ght, Primary * primary, int hash){ GHTEntry *tmp, *last = NULL;if (hash != FAILEDHASH) {tmp = ght[hash℄;while (tmp != NULL) {if (tmp->primary == primary) {if (last == NULL) {ght[hash℄ = tmp->next;} else {last->next = tmp->next;}return;}last = tmp;tmp = tmp->next;}}}



102int hashSeq(
har *seq, int hs, int ss, int es, int hsh[℄, int idx[℄){ int len; /* holds length of seq */int i, j; /* standard 
ounters */int h; /* the 
urrent hash is built in h */int nhashes = 0; /* num hashes generated 
ounter */len = strlen(seq);for (i = ss; i < (len - es); i++) {if (i < (len - (hs - 1))) {/* Cal
ulate the hash for this base */h = j = 0; /* initialize hash and loop 
ounter */while ((j < hs) && (h != FAILEDHASH)) {if (seq[i + j℄ == 'A') {h += (A * ipower(4, j));} else if (seq[i + j℄ == 'C') {h += (C * ipower(4, j));} else if (seq[i + j℄ == 'G') {h += (G * ipower(4, j));} else if (seq[i + j℄ == 'T') {h += (T * ipower(4, j));} else {h = FAILEDHASH;}++j; }hsh[i - ss℄ = h;idx[i - ss℄ = i;++nhashes;}}return (nhashes);}int 
ompareSeqs(int iLengthToMat
h, int iGoodS
ore,Primary * 
urP_p, 
har *strCSeq,int *iaCHashes, int *iaCIndexes, int iCNumHashes,int wrongLimit, int gapLimit, int wrongOrGapLimit,int *topPIndex, int *topCIndex,int iWrongPenalty, int iGapPenalty,int *nFoundWrong, int *nFoundMissing, int *nFoundInserted){ int topS
ore, s
ore;int iP, iC, iCStart;int iPNumHashes;int iPSeqLen, iCSeqLen;int i, numMasked;iP = iC = 0;while (
urP_p->hashes[iP℄ == FAILEDHASH)iP++;while (iaCHashes[iC℄ == FAILEDHASH)iC++;iPNumHashes = 
urP_p->nHashes;iPSeqLen = strlen(
urP_p->seq);iCSeqLen = strlen(strCSeq);// printf("numHashesP = %d, numHashesC = %d\n", iPNumHashes, iCNumHashes);topS
ore = s
ore = 0;while ((iP < iPNumHashes) && (iC < iCNumHashes)) {if (
urP_p->hashes[iP℄ == iaCHashes[iC℄) {iCStart = iC;



103while ((
urP_p->hashes[iP℄ == iaCHashes[iC℄) && (iP <= iPNumHashes)) {while ((
urP_p->hashes[iP℄ == iaCHashes[iC℄)&& (iC <= iCNumHashes)) {if ((
urP_p->indexes[iP℄ <= (iPSeqLen - iLengthToMat
h))&& (iaCIndexes[iC℄ <= (iCSeqLen - iLengthToMat
h))) {/* Only 
all s
ore mat
h if the mat
h has the potential to bemore left than the previous best mat
h */if (((
urP_p->indexes[iP℄ + iaCIndexes[iC℄) <(*topPIndex + *topCIndex)) || (topS
ore == 0)) {/* Only 
all s
ore mat
h if there are not more than wrongLimitmasked 
hara
ters in a iLengthToMat
h Region */numMasked = 0;for (i = iaCIndexes[iC℄;i < (iaCIndexes[iC℄ + iLengthToMat
h); i++) {if (strCSeq[i℄ == 'X')++numMasked;}if (numMasked <= wrongLimit) {s
ore = S
oreMat
h(
urP_p->seq, 
urP_p->indexes[iP℄,strCSeq, iaCIndexes[iC℄, iLengthToMat
h,wrongLimit, gapLimit, wrongOrGapLimit,iWrongPenalty, iGapPenalty, 0,/* re
ursiveFlag*/nFoundWrong, nFoundMissing,nFoundInserted);if (s
ore >= iGoodS
ore) {topS
ore = s
ore;*topPIndex = 
urP_p->indexes[iP℄;*topCIndex = iaCIndexes[iC℄;} }}}iC++;}iC = iCStart;iP++; }} else { /* the hashes dont mat
h */if (
urP_p->hashes[iP℄ > iaCHashes[iC℄) {iC++; } else {iP++; }}} /* end while !foundCluster && iP && iC */return (topS
ore);}void writeClusters(FILE * fd, Primary * head, int bpl, int *nOrph,
har *inFiles[℄, int div[℄, int nCF, int vPrimary){ Primary *p;Se
ondary *s;int orph;int nblanks = 1; /* num blank lines to put between sequen
es */



104int i, j;FILE *fd_out;
har newCF[MAXFNAME + 1℄;p = head;orph = 0;/* write new versions of previously 
lustered files */if (nCF > 0) {j = 0;for (i = 0; i < nCF; i++) {if (strlen(inFiles[i℄) > (MAXFNAME - 5)) {eprintf(" output filename too long.\n");}str
py(newCF, inFiles[i℄);str
at(newCF, ".out");printf(" Writing %s...\n", newCF);fd_out = fopen(newCF, "w
");if (fd_out == NULL)eprintf("
an't open %s:", newCF);while (j < div[i℄) {fprintf(fd_out, "�P: %s %d\n", p->name, p->
lusID);printSeq(fd_out, p->seq, bpl, nblanks);if (vPrimary == 1) {fprintf(fd_out, "�VP: %d %d %d %d %d\n", p->nInternal,p->nBothExt, p->nFrontExt, p->nTailExt, p->nProblems);printSeq(fd_out, p->vp, bpl, nblanks);}s = p->headS;while (s != NULL) {fprintf(fd_out, "�S: %s %d %d %d %f ", s->name, s->iP, s->iS,s->mat
hLen, s->s
ore);if (s->dir == FORWARD)fprintf(fd_out, "%s", "FORWARD ");elsefprintf(fd_out, "%s", "REVCOMP ");if (s->s
ore == 0) {fprintf(fd_out, "%s", "ORPHAN");++orph;}fprintf(fd_out, "\n");printSeq(fd_out, s->seq, bpl, nblanks);s = s->next;}p = p->next;++j; }f
lose(fd_out);}}while (p != NULL) {fprintf(fd, "�P: %s\n", p->name);printSeq(fd, p->seq, bpl, nblanks);if (vPrimary == 1) {fprintf(fd, "�VP: %d %d %d %d %d\n", p->nInternal, p->nBothExt,p->nFrontExt, p->nTailExt, p->nProblems);printSeq(fd, p->vp, bpl, nblanks);}



105s = p->headS;while (s != NULL) {fprintf(fd, "�S: %s %d %d %d %f ", s->name, s->iP, s->iS,s->mat
hLen, s->s
ore);if (s->dir == FORWARD)fprintf(fd, "%s", "FORWARD ");elsefprintf(fd, "%s", "REVCOMP ");if (s->s
ore == 0) {fprintf(fd, "%s", "ORPHAN");++orph;}fprintf(fd, "\n");printSeq(fd, s->seq, bpl, nblanks);s = s->next;}p = p->next;}*nOrph = orph;}/* simple insertion sort to sort hit list */void sortHitList(Hit_p hits, int nHits){ int i;Hit_p a = hits;int l = 0;int r = nHits - 1;for (i = r; i > l; i--) {if (a[i℄.s
ore > a[i - 1℄.s
ore) {Hit t = a[i - 1℄;a[i - 1℄ = a[i℄;a[i℄ = t;}}for (i = l + 2; i <= r; i++) {int j = i;Hit v = a[i℄;while (v.s
ore > a[j - 1℄.s
ore) {a[j℄ = a[j - 1℄;j--;}a[j℄ = v;}} A.2.3 
ompare.
/***************************************************************************
ompare.
 - routines to 
ompare sequen
es-----------------------------------------begin : Mon De
 13 1999author : Tom Casavant, modified by Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude "ui
luster.h"#in
lude "options.h"#in
lude "fasta.h"#in
lude "
luster.h"#in
lude "
ompare.h"



106#in
lude "utils.h"int S
oreMat
h(
har *strPattern, int strPatternIndex,
har *strSubje
t, int strSubje
tIndex,int iLengthToMat
h,int iWrongLimit, int iGapLimit, int iWrongOrGapLimit,int iWrongPenalty, int iGapPenalty,int iRe
ursiveFlag,int *nWrong_p, int *nMissing_p, int *nInserted_p){ int _iS
ore, _iMissingS
ore, _iWrongS
ore, _iInseredS
ore;stati
 int iLo
alWrong, iLo
alMissing, iLo
alInserted;/* Initialize */if (!iRe
ursiveFlag) {iLo
alWrong = iLo
alMissing = iLo
alInserted = 0;*nWrong_p = iWrongLimit;*nMissing_p = *nInserted_p = iGapLimit;}if ((iLengthToMat
h == 0) || (iLo
alWrong > iWrongLimit)|| ((iLo
alMissing + iLo
alInserted) > iGapLimit)|| ((iLo
alMissing + iLo
alInserted + iLo
alWrong) >iWrongOrGapLimit)) {/* base of re
ursion */if ((iLengthToMat
h == 0) && (iLo
alWrong <= iWrongLimit)&& ((iLo
alMissing + iLo
alInserted) <= iGapLimit)&& ((iLo
alMissing + iLo
alInserted + iLo
alWrong) <=iWrongOrGapLimit)) {if ((iLo
alWrong + iLo
alMissing + iLo
alInserted) <((*nMissing_p) + (*nInserted_p) + (*nWrong_p))) {*nWrong_p = iLo
alWrong;*nMissing_p = iLo
alMissing;*nInserted_p = iLo
alInserted;}_iS
ore = 0;return (_iS
ore);} else {_iS
ore = 0;return (_iS
ore);}} else { /* re
ursion */if (strPattern[strPatternIndex℄ == strSubje
t[strSubje
tIndex℄) {_iS
ore =1 + S
oreMat
h(strPattern, strPatternIndex + 1, strSubje
t,strSubje
tIndex + 1, iLengthToMat
h - 1,iWrongLimit, iGapLimit, iWrongOrGapLimit,iWrongPenalty, iGapPenalty, TRUE,/* iRe
ursiveFlag*/nWrong_p, nMissing_p, nInserted_p);return (_iS
ore);} else { /* test for a possible missing, inserted orwrong base */iLo
alWrong += iWrongPenalty;_iWrongS
ore =S
oreMat
h(strPattern, strPatternIndex + 1, strSubje
t,strSubje
tIndex + 1, iLengthToMat
h - 1, iWrongLimit,iGapLimit, iWrongOrGapLimit, iWrongPenalty,iGapPenalty, TRUE,/* iRe
ursiveFlag */nWrong_p, nMissing_p, nInserted_p);iLo
alWrong -= iWrongPenalty;iLo
alMissing += iGapPenalty;_iMissingS
ore =
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oreMat
h(strPattern, strPatternIndex + 1, strSubje
t,strSubje
tIndex, iLengthToMat
h - 1, iWrongLimit,iGapLimit, iWrongOrGapLimit, iWrongPenalty,iGapPenalty, TRUE,/* iRe
ursiveFlag */nWrong_p, nMissing_p, nInserted_p);iLo
alMissing -= iGapPenalty;iLo
alInserted += iGapPenalty;_iInseredS
ore =S
oreMat
h(strPattern, strPatternIndex, strSubje
t,strSubje
tIndex + 1, iLengthToMat
h, iWrongLimit,iGapLimit, iWrongOrGapLimit, iWrongPenalty,iGapPenalty, TRUE,/* iRe
ursiveFlag */nWrong_p, nMissing_p, nInserted_p);iLo
alInserted -= iGapPenalty;if ((_iWrongS
ore >= _iMissingS
ore)&& (_iWrongS
ore >= _iInseredS
ore)) {_iS
ore = _iWrongS
ore;} else {if (_iMissingS
ore >= _iInseredS
ore) {_iS
ore = _iMissingS
ore;} else { /* (_iInseredS
ore > _iMissingS
ore) */_iS
ore = _iInseredS
ore;} }return (_iS
ore);}} /* end of re
ursion sub
ase */} /* end of S
oreMat
h */
stati
 int *tmpCHashPrefix = NULL;stati
 int *tmpCHashPrefixIndex = NULL;stati
 int *tmpPHashPrefix = NULL;stati
 int *tmpPHashPrefixIndex = NULL;void extendMat
h(
har *pSeq, 
har *
Seq,int topS
ore, int lengthToMat
h, int hashSize,int radix, int skip, 
har maskedChar,int wrongLimit, int gapLimit, int wrongOrGapLimit,int topPIndex, int topCIndex,int wrongPenalty, int gapPenalty,int *totalErrors, int *bestLength){ int growTryLength;int minGrowWindowC, minGrowWindowP, growWindowC, growWindowP;int numCHashes, numPHashes;int growing, foundGrowStart;int maskedIndex;int prevCandPIndex, prevCandCIndex, 
andCIndex, 
andPIndex;int s
ore;int nFoundWrong, nFoundMissing, nFoundInserted;int growWrongLimit, growGapLimit, growWrongOrGapLimit = 0;*totalErrors = lengthToMat
h - topS
ore;



108/* Then we found a Primary that mat
hed the 
urrent Candidate. The *approa
h is to try to append regions of lengthToMat
h until the end * ofone sequen
e or until a shorter segment has to be appended. This * 
anheppen for several reasons: a) the one sequen
e or the other is * tooshort, b) the hases are -1 in the end of the region most * re
entlyappended, or 
) the new overlapping region is shorter * than theattempted length being appended. To do this we have to * re-sort thehashes a

ording to index instead of by hash value. We * use a 
ouple oftmp arrays to hold these indi
es. */if (tmpPHashPrefix == NULL) {tmpPHashPrefix = (int *) emallo
(MAXSLEN * sizeof(int));tmpCHashPrefix = (int *) emallo
(MAXSLEN * sizeof(int));tmpPHashPrefixIndex = (int *) emallo
(MAXSLEN * sizeof(int));tmpCHashPrefixIndex = (int *) emallo
(MAXSLEN * sizeof(int));}numPHashes =hashSeq(pSeq, hashSize, skip, 0, tmpPHashPrefix,tmpPHashPrefixIndex);numCHashes =hashSeq(
Seq, hashSize, skip, 0, tmpCHashPrefix,tmpCHashPrefixIndex);growing = TRUE;*bestLength = topS
ore;prevCandPIndex = -1;prevCandCIndex = -1;
andCIndex = topCIndex + *bestLength;
andPIndex = topPIndex + *bestLength;/* This is the main loop whi
h 
ontinues to add segments as * long as theprevious segment added was of maximum length. * As soon as the attemptedlength to be added is shorter than * the maximum length (lengthToMat
h)we set the growing flag * to FALSE. Note, that this is initially truebefore entering * this loop and that there are many ways that growth 
anend. * It is important that in ea
h 
lause below, if an a
tion is *taken or 
ondition dete
ted, that indi
ates that further * growth willnot be possible after trying to mat
h the * 
urrent segment, we have toset the growing flag to FALSE. */while (growing) {/* Now we must bound the new attempted growth region by the * length ofthe shorter of the two sequen
es */growTryLength = lengthToMat
h;if ((
andCIndex + growTryLength) > strlen(
Seq)) {growTryLength = strlen(
Seq) - 
andCIndex;growing = FALSE;}if ((
andPIndex + growTryLength) > strlen(pSeq)) {growTryLength = strlen(pSeq) - 
andPIndex;growing = FALSE;}/* Now the maximum length of the attempted growth region is * determined.Next we have to determine the starting * position in the 
urrentlygrown region to begin the * extension. This is done by 
omparing thehash values in the * region just before the end of the previoussegment to have * been appended. HOWEVER, before that, we must makesure we * arent 
omparing FAILED_HASH values. The first segment of *
ode below s
ans ba
kward over the FAILE_DHASH values, and * these
ond segment looks ba
kward from there for a hash * mat
h. The firstblo
k may result in setting growing to * FALSE. The se
ond blo
k may



109not. *//* First blo
k: Find the non-failed hashes region */minGrowWindowC = 0;while ((minGrowWindowC < growTryLength)&& (tmpCHashPrefix[
andCIndex - skip - minGrowWindowC℄ ==FAILEDHASH)) {minGrowWindowC++;}minGrowWindowP = 0;while ((minGrowWindowP < growTryLength)&& (tmpPHashPrefix[
andPIndex - skip - minGrowWindowP℄ ==FAILEDHASH)) {minGrowWindowP++;}if ((minGrowWindowC > 0) || (minGrowWindowP > 0)) {growing = FALSE;}/* Now find the first mat
hing non-failed hash *//* The next 2 lines are needed in 
ase the first loop is never *exe
uted. For instan
e, if the hashes mat
h right away * -- whi
h"should" be 
ommon */growWindowP = minGrowWindowP;growWindowC = minGrowWindowC;foundGrowStart = (tmpCHashPrefix[
andCIndex - skip - growWindowC℄== tmpPHashPrefix[
andPIndex - skip - growWindowP℄);for (growWindowC = minGrowWindowC;(growWindowC < growTryLength) && (!foundGrowStart); growWindowC++) {for (growWindowP = minGrowWindowP;(growWindowP < growTryLength) && (!foundGrowStart);growWindowP++) {foundGrowStart = (tmpCHashPrefix[
andCIndex - skip - growWindowC℄== tmpPHashPrefix[
andPIndex - skip -growWindowP℄);} /* end for growWindowP */} /* end for growWindowC */
andCIndex -= growWindowC;
andPIndex -= growWindowP;/* Now we safeguard that we don't have a pathologi
al 
ase in whi
h * thenew 
andidate site is identi
al to the previous one with just * enougherrors in the previous grow region to make them look * different */if ((prevCandPIndex == 
andPIndex) || (prevCandCIndex == 
andCIndex)) {foundGrowStart = FALSE;} else {prevCandPIndex = 
andPIndex;prevCandCIndex = 
andCIndex;}if (foundGrowStart) {growWrongLimit =((double) wrongLimit / (double) lengthToMat
h) *(double) growTryLength;growWrongLimit = min2((growWrongLimit + 1), (growTryLength - 1));growGapLimit =((double) gapLimit / (double) lengthToMat
h) *(double) growTryLength;growGapLimit = min2((growGapLimit + 1), (growTryLength - 1));growWrongOrGapLimit =((double) wrongOrGapLimit / (double) lengthToMat
h) *(double) growTryLength;



110growWrongOrGapLimit =min2((growWrongOrGapLimit + 1), (growTryLength - 1));s
ore = S
oreMat
h(pSeq, 
andPIndex, 
Seq, 
andCIndex, growTryLength,growWrongLimit, growGapLimit, growWrongOrGapLimit,wrongPenalty, gapPenalty, FALSE,/* re
ursiveFlag*/&nFoundWrong, &nFoundMissing, &nFoundInserted);} else {growTryLength = 0;growing = FALSE;s
ore = 0;}if ((s
ore > 0) && (s
ore < (growTryLength - growWrongOrGapLimit))) {growing = FALSE;while (s
ore < (growTryLength - growWrongOrGapLimit)&& (growTryLength > 1)) {growTryLength--;growWrongLimit =((double) wrongLimit / (double) lengthToMat
h) *(double) growTryLength;growWrongLimit = min2((growWrongLimit + 1), (growTryLength - 1));growGapLimit =((double) gapLimit / (double) lengthToMat
h) *(double) growTryLength;growGapLimit = min2((growGapLimit + 1), (growTryLength - 1));growWrongOrGapLimit =((double) wrongOrGapLimit / (double) lengthToMat
h) *(double) growTryLength;growWrongOrGapLimit =min2((growWrongOrGapLimit + 1), (growTryLength - 1));s
ore =S
oreMat
h(pSeq, 
andPIndex, 
Seq, 
andCIndex, growTryLength,growWrongLimit, growGapLimit, growWrongOrGapLimit,wrongPenalty, gapPenalty, FALSE,/* re
ursiveFlag */&nFoundWrong, &nFoundMissing, &nFoundInserted);}}*bestLength += (growTryLength - max2(growWindowC, growWindowP));// printf("Best Length: %d\n", *bestLength);*totalErrors += (growTryLength - s
ore);
andCIndex += (growTryLength - growWindowC);
andPIndex += (growTryLength - growWindowP);maskedIndex = 0;while ((
Seq[
andCIndex + maskedIndex℄ == maskedChar)&& (pSeq[
andPIndex + maskedIndex℄ == maskedChar)) {maskedIndex++;}if ((maskedIndex > 0)&& (
Seq[
andCIndex + maskedIndex℄ ==pSeq[
andPIndex + maskedIndex℄)) {
andCIndex += maskedIndex;
andPIndex += maskedIndex;*bestLength += maskedIndex;}if ((
Seq[
andCIndex℄ == '\0') || (pSeq[
andPIndex℄ == '\0')) {growing = FALSE;}}



111} A.2.4 fasta.
/***************************************************************************fasta.
 - routines for working with fastA files-------------------------------------------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <string.h>#in
lude "ui
luster.h"#in
lude "utils.h"#in
lude "fasta.h"#in
lude "options.h"#in
lude "
luster.h"#in
lude "memory.h"stati
 
har *inLine; /* buffer to hold 
urrent input line */stati
 
har *tag; /* the 
urrent tag line, sans > */stati
 
har *inseq; /* buffer for 
urrent seq */int readSeq(FILE * fd_fasta, FASTASeq * seq, FILE * fd_rej, int r
,int nReje
ts){ int seqLen; /* length of 
urrent input seq */int fs; /* the index of the first spa
e in the tagline */int i;
har *status;if (inLine == NULL) {inLine = (
har *) emallo
(MAXLINE * sizeof(
har));tag = (
har *) emallo
(MAXLINE * sizeof(
har));inseq = (
har *) emallo
(MAXSLEN * sizeof(
har));}/* read until first sequen
e found */status = fgets(inLine, MAXLINE, fd_fasta);while ((status != NULL) && (inLine[0℄ != '>')) {inLine = fgets(inLine, MAXLINE, fd_fasta);}/* if the start of a sequen
e was found, read it into memory */if (inLine[0℄ == '>') {
homp(inLine);str
py(tag, inLine + 1);/* read the sequen
e data */seqLen = 0;inseq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd_fasta);while ((status != NULL) && (inLine[0℄ != '>')) {seqLen += strlen(
homp(inLine));str
at(inseq, inLine);status = fgets(inLine, MAXLINE, fd_fasta);}/* if the next sequen
e was found, put ba
k inLine */if (inLine[0℄ == '>') {fseek(fd_fasta, -(strlen(inLine)), SEEK_CUR);



112}/* make sure the input sequen
e isn't too long */if (seqLen >= MAXSLEN) {eprintf("Sequen
e %s > MAXSLEN (%d)\n", tag, seqLen);}/* 
he
k to see if input sequen
e is a reje
t */if (
ountBases(inseq) <= r
) {/* if we have a handle on the reje
t file, output the reje
t to it */if (fd_rej != NULL) {fprintf(fd_rej, "%d. %s\n", nReje
ts + 1, tag);printSeq(fd_rej, inseq, NBASESONLINE, 1);}return REJECT_SEQ;}/* find the first spa
e */i = fs = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {i++;}fs = i;printf("fs=%d, %s\n", fs, tag);/* store the sequen
e name */if (fs == 0) {fs = MAXSNAME - 1;}strn
py(seq->name, tag, fs);seq->name[fs℄ = '\0';printf("\n1: %s\n", seq->name);/* store the sequen
e */str
py(seq->seq, inseq);return GOOD_SEQ;}/* if we got here, there are no more seqs */return NO_MORE_SEQS;}/* readSeqs: reads fasta seqs into linked list reje
tingthose with fewer than r
 bases */void readSeqs(FILE * fd, FILE * fdRej, int r
, FASTASeq ** head,int *nSeqs, int *nRej){ 
har *inLine; /* buffer to hold 
urrent input line */
har *tag; /* the 
urrent tag line, sans > */
har *seq; /* buffer for 
urrent seq */int seqLen; /* length of 
urrent input seq */FASTASeq *tail; /* tail seq in list */FASTASeq *tmp; /* 
urrent input seq */int ns = 0; /* number of sequen
es read */int rej = 0; /* number of sequen
es reje
ted (shorter thanr
) */int fs; /* the index of the first spa
e in the tagline */int i;
har *status;inLine = (
har *) emallo
(MAXLINE * sizeof(
har));tag = (
har *) emallo
(MAXLINE * sizeof(
har));



113seq = (
har *) emallo
(MAXSLEN * sizeof(
har));*head = tail = NULL;while ((inLine = fgets(inLine, MAXLINE, fd)) != NULL) {if (inLine[0℄ == '>') {++ns;
homp(inLine);str
py(tag, inLine + 1);seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((inLine[0℄ != '>') && (status != NULL)) {seqLen += strlen(
homp(inLine));str
at(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf("Sequen
e %s > MAXSLEN (%d)\n", tag, seqLen);}if (
ountBases(seq) > r
) {tmp = getFASTASeq();fs = 0;i = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {i++;}fs = i;if (fs == 0) {fs = MAXSNAME - 1;}strn
py(tmp->name, tag, fs);tmp->seq = (
har *) emallo
((seqLen + 1) * sizeof(
har));str
py(tmp->seq, seq);tmp->next = NULL;if (*head == NULL) {*head = tail = tmp;} else {tail->next = tmp;tail = tmp;} } else {if (fdRej != NULL) {++rej;fprintf(fdRej, "%d. %s\n", rej, tag);printSeq(fdRej, seq, NBASESONLINE, 1);} }}}*nSeqs = ns;*nRej = rej;free(inLine);free(tag);free(seq);}



114/* printSeq: print a fasta sequen
e */void printSeq(FILE * fd, 
har *seq, int bpl, int nblanks){ int i, j = 0;int len = strlen(seq);
har *ptr;/* // original 
ode for(i=0; i<len; i++) { put
 (seq[i℄, fd); ++j; if (j ==bpl) { put
 ('\n', fd); j = 0; } } */ptr = seq;for (i = 0; i < len; i++) {put
(*ptr, fd);++j;++ptr;if (j == bpl) {put
('\n', fd);j = 0;}}if (j != 0)++nblanks;for (i = 0; i < nblanks; i++)put
('\n', fd);} A.2.5 in
remental.
/***************************************************************************in
remental.
 - routines for in
remental 
lustering-----------------------------------------------------begin : Wed Jan 12 2000author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <string.h>#in
lude "ui
luster.h"#in
lude "utils.h"#in
lude "fasta.h"#in
lude "options.h"#in
lude "
luster.h"#in
lude "memory.h"#in
lude "in
remental.h"int readClusFiles(
har *
fname, Primary ** head, Primary ** tail,
har *inFilesOut[℄, int div[℄){ FILE *fd_
f;
har *inFiles[MAXPRE℄;int i;int nCF;int nPrimes;int nSe
nds;/* handle 
ase where no previously 
luster files are input */if (str
mp(
fname, "none") == 0)return 0;



115for (i = 0; i < MAXPRE; i++) {div[i℄ = -1;inFiles[i℄ = (
har *) emallo
((MAXFNAME + 1) * sizeof(
har));}fd_
f = fopen(
fname, "r");if (fd_
f == NULL)eprintf("
an't open %s:", 
fname);i = 0;while ((inFiles[i℄ = fgets(inFiles[i℄, MAXFNAME, fd_
f)) != NULL) {
homp(inFiles[i℄);++i;if (i > MAXPRE) {eprintf(" too many previously 
lustered files.");}}nCF = i;f
lose(fd_
f);/* read in the primaries from the pre-
lustered files */*head = *tail = NULL;nPrimes = nSe
nds = 0;for (i = 0; i < nCF; i++) {printf(" reading %s: ", inFiles[i℄);fd_
f = fopen(inFiles[i℄, "r");if (fd_
f == NULL)eprintf("
an't open %s:", inFiles[i℄);nPrimes = nSe
nds = 0;parseClusFile(fd_
f, head, tail, &nPrimes, &nSe
nds);printf("%d primaries, %d se
ondaries\n", nPrimes, nSe
nds);if (i == 0)div[i℄ = nPrimes;elsediv[i℄ = div[i - 1℄ + nPrimes;f
lose(fd_
f);}for (i = 0; i < nCF; i++) {printf("%s\n", inFiles[i℄);inFilesOut[i℄ = inFiles[i℄;}return (nCF);}int parseClusFile(FILE * fd, Primary ** head, Primary ** tail,int *nPrimes, int *nSe
nds){ 
har *inLine; /* buffer to hold 
urrent input line */
har *tag; /* the 
urrent tag line, sans �P */
har *seq; /* buffer for 
urrent primary seq */int seqLen; /* length of 
urrent input primary seq */Primary *tmp; /* 
urrent input primary */Se
ondary *tmpS; /* 
urrent input se
ondary */Se
ondary *s;int fs; /* the index of the first spa
e in the tagline */int i;
har *status;inLine = (
har *) emallo
(MAXLINE * sizeof(
har));tag = (
har *) emallo
(MAXLINE * sizeof(
har));seq = (
har *) emallo
(MAXSLEN * sizeof(
har));*nPrimes = *nSe
nds = 0;



116while ((inLine = fgets(inLine, MAXLINE, fd)) != NULL) {if (inLine[0℄ == '�' && inLine[1℄ == 'P') {++(*nPrimes);
homp(inLine);str
py(tag, inLine + 4);seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((status != NULL) && (inLine[0℄ != '�')) {seqLen += strlen(
homp(inLine));str
at(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf(" Sequen
e %s > MAXSLEN (%d)\n", tag, seqLen);}tmp = getPrimary();fs = 0;i = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {i++; }fs = i;if (fs == 0) {fs = MAXSNAME - 1;}tmp->name = (
har *) emallo
((MAXSNAME + 1) * sizeof(
har));strn
py(tmp->name, tag, fs);tmp->seq = (
har *) emallo
((seqLen + 1) * sizeof(
har));str
py(tmp->seq, seq);tmp->next = NULL;tmp->nHashes = 0;tmp->nTou
hed = 0;tmp->nSe
ondaries = 0; /* fixme */tmp->hashes = NULL;tmp->indexes = NULL;tmp->headS = NULL;tmp->nextCP = NULL;if (*head == NULL) {*head = *tail = tmp;} else {(*tail)->next = tmp;*tail = tmp;}} else if (inLine[0℄ == '�' && inLine[1℄ == 'S') {++(*nSe
nds);
homp(inLine);str
py(tag, inLine + 4);seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((status != NULL) && (inLine[0℄ != '�')) {seqLen += strlen(
homp(inLine));str
at(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */



117fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf(" Sequen
e %s > MAXSLEN (%d)\n", tag, seqLen);}tmpS = getSe
ondary();fs = 0;i = 0;while ((i < MAXSNAME) && (tag[i℄ != ' ')) {++i; }fs = i;if (fs == 0) {fs = MAXSNAME - 1;}tmpS->name = (
har *) emallo
((MAXSNAME + 1) * sizeof(
har));strn
py(tmpS->name, tag, fs);tmpS->seq = (
har *) emallo
((seqLen + 1) * sizeof(
har));str
py(tmpS->seq, seq);tmpS->next = NULL;ss
anf(tag + fs, "%d %d %d %lf", &(tmpS->iP), &(tmpS->iS),&(tmpS->mat
hLen), &(tmpS->s
ore));if (tag[strlen(tag) - 2℄ == 'D') {tmpS->dir = FORWARD;} else if (tag[strlen(tag) - 2℄ == 'P') {tmpS->dir = REVCOMP;}/* Add the se
ondary to the 
urrent primary */if (tmp->headS == NULL) {tmp->headS = tmpS;} else {s = tmp->headS;while (s->next != NULL) {s = s->next;}s->next = tmpS;}++(tmp->nSe
ondaries);} else if (inLine[0℄ == '�' && inLine[1℄ == 'V') {
homp(inLine);str
py(tag, inLine + 5);/* read the sequen
e */seqLen = 0;seq[0℄ = '\0';status = fgets(inLine, MAXLINE, fd);while ((status != NULL) && (inLine[0℄ != '�')) {seqLen += strlen(
homp(inLine));str
at(seq, inLine);status = fgets(inLine, MAXLINE, fd);}/* Rewind to the begining of the line */fseek(fd, -(strlen(inLine)), SEEK_CUR);if (seqLen >= MAXSLEN) {eprintf(" Sequen
e %s > MAXSLEN (%d)\n", tag, seqLen);}



118tmp->vp = (
har *) emallo
((seqLen * 2) + 1);str
py(tmp->vp, seq);tmp->vpLen = seqLen;tmp->maxvpLen = seqLen * 2;/* parse the tag line */ss
anf(tag, "%d %d %d %d %d\n", tmp->nInternal, tmp->nBothExt,tmp->nFrontExt, tmp->nTailExt, tmp->nProblems);}}free(inLine);free(tag);free(seq);return (*nPrimes);} A.2.6 memory.
/***************************************************************************memory.
 - memory blo
k allo
ation routines---------------------------------------------begin : Tue De
 14 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude "ui
luster.h"#in
lude "utils.h"#in
lude "fasta.h"#in
lude "options.h"#in
lude "
luster.h"#in
lude "memory.h"stati
 GHTEntry *ghtMem;stati
 Primary *pMem;stati
 Se
ondary *sMem;stati
 FASTASeq *fsMem;/*stati
 
har *seqMem; */stati
 int ghtIndex = GHTBLOCK;stati
 int fsIndex = FASTABLOCK;stati
 int pIndex = PRIMEBLOCK;stati
 int sIndex = SECNDBLOCK;GHTEntry *getGHTEntry(){ GHTEntry *tmp;if (ghtIndex >= GHTBLOCK) {/* Array is full, make a new one. */ghtMem = (GHTEntry *) emallo
(GHTBLOCK * sizeof(GHTEntry));ghtIndex = 0;}tmp = ghtMem + ghtIndex;ghtIndex++;return (tmp);}Primary *getPrimary(){



119Primary *tmp;if (pIndex >= PRIMEBLOCK) {/* Array is full, make a new one. */pMem = (Primary *) emallo
(PRIMEBLOCK * sizeof(Primary));pIndex = 0;}tmp = pMem + pIndex;pIndex++;return (tmp);}Se
ondary *getSe
ondary(){ Se
ondary *tmp;if (sIndex >= SECNDBLOCK) {/* Array is full, make a new one. */sMem = (Se
ondary *) emallo
(SECNDBLOCK * sizeof(Se
ondary));sIndex = 0;}tmp = sMem + sIndex;sIndex++;return (tmp);}FASTASeq *getFASTASeq(){ FASTASeq *tmp;if (fsIndex >= FASTABLOCK) {/* Array is full, make a new one. */fsMem = (FASTASeq *) emallo
(FASTABLOCK * sizeof(FASTASeq));fsIndex = 0;}tmp = fsMem + fsIndex;fsIndex++;return (tmp);} A.2.7 options.
/***************************************************************************options.
 - parse options for UI
luster----------------------------------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude "getopt.h"#in
lude "ui
luster.h"#in
lude "options.h"#in
lude "utils.h"/* 
alled by main to get the user-defined parameters. options 
an
ome from either the 
ommand line or the 
onfiguration file. the
ommand line has priority*/int getopts(Options * o, int arg
, 
har **argv)



120{ int 
;int option_index = 0;stati
 stru
t option long_opts[℄ = {{"preClus", 1, 0, 0},{"rejCrit", 1, 0, 0},{"hashSize", 1, 0, 0},{"startSkip", 1, 0, 0},{"endSkip", 1, 0, 0},{"mat
hLen", 1, 0, 0},{"errLimit", 1, 0, 0},{"maskChar", 1, 0, 0},{"repi
k", 0, 0, 0},{"tryRevC", 0, 0, 0},{"hitThresh", 1, 0, 0},{"wrongPen", 1, 0, 0},{"gapPen", 1, 0, 0},{"wrongPen", 1, 0, 0},{"keepGoing", 0, 0, 0},{"vPrimary", 0, 0, 0},{"help", 0, 0, 0},{0, 0, 0, 0}};/* These aren't very good short option names */stati
 
har *short_opts = "F:R:H:S:s:M:E:C:h:P:p:";/* initially set options to hard-
oded defaults */str
py((*o).preCFile, "none");(*o).rejCrit = 100;(*o).hashSize = 8;(*o).startSkip = 18;(*o).endSkip = 0;(*o).lenToMat
h = 40;(*o).errLimit = 2;(*o).maskChar = 'X';(*o).repi
k = 0;(*o).tryRevC = 0;(*o).hitThresh = 16;(*o).wrongPen = 1;(*o).gapPen = 1;(*o).keepGoing = 0;(*o).vPrimary = 0;/* parse 
ommand line */
 = getopt_long(arg
, argv, short_opts, long_opts, &option_index);while (
 != -1) {swit
h (
) {
ase 0:if (str
mp(long_opts[option_index℄.name, "preClus") == 0) {str
py((*o).preCFile, optarg);}if (str
mp(long_opts[option_index℄.name, "rejCrit") == 0) {(*o).rejCrit = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "hashSize") == 0) {(*o).hashSize = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "startSkip") == 0) {(*o).startSkip = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "endSkip") == 0) {(*o).endSkip = atoi(optarg);}



121if (str
mp(long_opts[option_index℄.name, "mat
hLen") == 0) {(*o).lenToMat
h = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "errLimit") == 0) {(*o).errLimit = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "maskChar") == 0) {if (strlen(optarg) == 1) {(*o).maskChar = optarg[0℄;} else {wprintf(" mask 
har 
an only be one letter");return (FAILURE);} }if (str
mp(long_opts[option_index℄.name, "hitThresh") == 0) {(*o).hitThresh = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "wrongPen") == 0) {(*o).wrongPen = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "gapPen") == 0) {(*o).gapPen = atoi(optarg);}if (str
mp(long_opts[option_index℄.name, "tryRevC") == 0) {(*o).tryRevC = 1;}if (str
mp(long_opts[option_index℄.name, "repi
k") == 0) {(*o).repi
k = 1;}if (str
mp(long_opts[option_index℄.name, "keepGoing") == 0) {(*o).keepGoing = 1;}if (str
mp(long_opts[option_index℄.name, "vPrimary") == 0) {(*o).vPrimary = 1;}if (str
mp(long_opts[option_index℄.name, "help") == 0) {printUsage();return FAILURE;}break;
ase 'F':str
py((*o).preCFile, optarg);break;
ase 'R':(*o).rejCrit = atoi(optarg);break;
ase 'H':(*o).hashSize = atoi(optarg);break;
ase 'S':(*o).startSkip = atoi(optarg);break;
ase 's':(*o).endSkip = atoi(optarg);break;
ase 'M':(*o).lenToMat
h = atoi(optarg);break;
ase 'E':(*o).errLimit = atoi(optarg);break;
ase 'C':if (strlen(optarg) == 1) {



122(*o).maskChar = optarg[0℄;} else {wprintf(" mask 
har 
an only be one letter");return (FAILURE);}break;
ase 'h':(*o).hitThresh = atoi(optarg);break;
ase 'P':(*o).wrongPen = atoi(optarg);break;
ase 'p':(*o).gapPen = atoi(optarg);break;default:wprintf(" unexpe
ted 
ommand line option option -- %o", 
);return (FAILURE);}
 = getopt_long(arg
, argv, short_opts, long_opts, &option_index);}/* get the name of the input fasta file */if (optind == (arg
 - 1)) {str
py((*o).inFile, argv[optind℄);} else if (optind == (arg
)) {wprintf(" no input FASTA file spe
ified\n");printUsage();return FAILURE;} else if (optind < (arg
 - 1)) {wprintf(" too many non-option parameters -- only spe
ify one input FASTA file.\n");printUsage();return FAILURE;}return SUCCESS;}/* prints usage information */void printUsage(){ printf("%s %s Usage: ui
luster [options℄ input_fasta_file\n",progname(), getversion());printf("\n");printf(" Valid Options: (defaults are in parenthesis)");printf("\n");printf(" -F, --preClus spe
ifies the preClustered infile (none)\n");printf(" -R, --rejCrit spe
ifies the reje
tion 
riteria (100 bases)\n");printf(" -H, --hashSize spe
ifies the hash size ( 8 bases)\n");printf(" -S, --startSkip spe
ifies the start skip ( 18 bases)\n");printf(" -s, --endSkip spe
ifies the end skip ( 0 bases)\n");printf(" -M, --mat
hLen spe
ifies the length to mat
h ( 40 bases)\n");printf(" -E, --errLimit spe
ifies the error limit ( 2 bases)\n");printf(" -C, --maskChar spe
ifies the mask 
hara
ter ('X')\n");printf(" -h, --hitThresh spe
ifies the hit threshold (16)\n");



123printf(" -P, --wrongPen spe
ifies the wrong penalty (1)\n");printf(" -p, --gapPen spe
ifies the gap penalty (1)\n");printf(" --repi
k repi
k 
luster primaries (off)\n");printf(" --tryRevC 
he
k reverse 
ompliment (off)\n");printf(" --keepGoing perform exhaustive sear
h (off)\n");printf(" --vPrimary generate virtual primary (off)\n");printf(" --help view this message\n");printf("\n\n");}/* prints all user-defined parameters to the stream fd */void printopts(FILE * fd, Options o){ fprintf(fd, "Using Options:\n");fprintf(fd, " Input File = %s\n", o.inFile);fprintf(fd, " Pre
lus File = %s\n", o.preCFile);fprintf(fd, " Reje
t Crit = %4d Hash Size = %4d\n", o.rejCrit,o.hashSize);fprintf(fd, " Start Skip = %4d End Skip = %4d\n",o.startSkip, o.endSkip);fprintf(fd, " Mat
h Len = %4d Error Lim = %4d\n",o.lenToMat
h, o.errLimit);fprintf(fd, " Mask Char = %4
 Repi
k = %4d\n", o.maskChar,o.repi
k);fprintf(fd, " Try RevC = %4d Hit Thresh = %4d\n", o.tryRevC,o.hitThresh);fprintf(fd, " Wrong Pen = %4d Gap Pen = %4d\n", o.wrongPen,o.gapPen);fprintf(fd, " Keep Going = %4d vPrimary = %4d\n",o.keepGoing, o.vPrimary);} A.2.8 qsort.
/***************************************************************************qsort.
 - stand-alone qui
k sort----------------------------------begin : Mon De
 13 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stddef.h>#in
lude <stdlib.h>#in
lude "qsort.h"/* Do a qui
k sort on data[℄ while maintaining 
onsistan
y with index[℄.NOTE: This sort routine sorts data[1..n℄ NOT data[0..n-1℄.The 
aller should a

ount for this.based on 
ode in Numeri
al Re
ipes in C, Se
ond Edition*/void qsortWIndx(unsigned long n, int data[℄, int index[℄){ unsigned long i, ir = n, j, k, l = 1;int *ista
k, jsta
k = 0;int a, b, temp;



124ista
k = ive
tor(1, NSTACK);for (;;) {if (ir - l < M) {for (j = l + 1; j <= ir; j++) {a = data[j℄;b = index[j℄;for (i = j - 1; i >= l; i--) {if (data[i℄ <= a)break;data[i + 1℄ = data[i℄;index[i + 1℄ = index[i℄;}data[i + 1℄ = a;index[i + 1℄ = b;}if (!jsta
k) {free_ive
tor(ista
k, 1, NSTACK);return;}ir = ista
k[jsta
k℄;l = ista
k[jsta
k - 1℄;jsta
k -= 2;} else {k = (l + ir) >> 1;SWAP(data[k℄, data[l + 1℄)SWAP(index[k℄, index[l + 1℄)if (data[l℄ > data[ir℄) {SWAP(data[l℄, data[ir℄)SWAP(index[l℄, index[ir℄)}if (data[l + 1℄ > data[ir℄) {SWAP(data[l + 1℄, data[ir℄)SWAP(index[l + 1℄, index[ir℄)}if (data[l℄ > data[l + 1℄) {SWAP(data[l℄, data[l + 1℄)SWAP(index[l℄, index[l + 1℄)}i = l + 1;j = ir;a = data[l + 1℄;b = index[l + 1℄;for (;;) {doi++;while (data[i℄ < a);doj--;while (data[j℄ > a);if (j < i)break;SWAP(data[i℄, data[j℄)SWAP(index[i℄, index[j℄)}data[l + 1℄ = data[j℄;data[j℄ = a;index[l + 1℄ = index[j℄;index[j℄ = b;jsta
k += 2;if (jsta
k > NSTACK)nrerror("NSTACK too small in sort2.");if (ir - i + 1 >= j - 1) {ista
k[jsta
k℄ = ir;ista
k[jsta
k - 1℄ = i;ir = j - 1;



125} else {ista
k[jsta
k℄ = j - 1;ista
k[jsta
k - 1℄ = l;l = i;}}}}/* display an error and exit */void nrerror(
har error_text[℄){ fprintf(stderr, "Sorting run-time error...\n");fprintf(stderr, "%s\n", error_text);fprintf(stderr, "...now exiting to system...\n");exit(1);}/* allo
ate memory for an integer array */int *ive
tor(long nl, long nh){ int *v;v = (int *) mallo
((size_t) ((nh - nl + 1 + NR_END) * sizeof(int)));if (!v)nrerror("allo
ation failure in ive
tor()");return v - nl + NR_END;}/* free an integer aray */void free_ive
tor(int *v, long nl, long nh){ free((FREE_ARG) (v + nl - NR_END));} A.2.9 utils.
/***************************************************************************utils.
 - some useful utilities for UI
luster-----------------------------------------------begin : Sun De
 12 1999author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <stdarg.h>#in
lude <unistd.h>#in
lude <time.h>#in
lude <string.h>#in
lude <errno.h>#in
lude "utils.h"stati
 
har *name = NULL; /* Program name for messages */stati
 
har *version = NULL; /* Program version */stati
 int m
; /* total num mallo
 
alls made *//* returns the total num of mallo
 
alls made so far */int nmallo
s(){ return m
;}/* store name of program */void setprogname(
har *str)



126{ name = estrdup(str);}/* return stored name of program */
har *progname(void){ return name;}/* store version number */void setversion(
har *str){ version = estrdup(str);}/* return stored version number */
har *getversion(void){ return version;}/* print error message and exit program */void eprintf(
har *fmt, ...){ va_list args;fflush(stdout);if (progname() != NULL) {fprintf(stderr, "%s:", progname());}/* print the error message */va_start(args, fmt);vfprintf(stderr, fmt, args);va_end(args);/* print the errno if the put a ':' at end of fmt */if (fmt[0℄ != '\0' && fmt[strlen(fmt) - 1℄ == ':') {fprintf(stderr, " %s", strerror(errno));}fprintf(stderr, "\n");exit(EXIT_FAILURE);}/* print warning message */void wprintf(
har *fmt, ...){ va_list args;fflush(stdout);if (progname() != NULL) {fprintf(stderr, "%s:", progname());}/* print the warning message */va_start(args, fmt);vfprintf(stderr, fmt, args);va_end(args);/* print the errno if the put a ':' at end of fmt */if (fmt[0℄ != '\0' && fmt[strlen(fmt) - 1℄ == ':') {fprintf(stderr, " %s", strerror(errno));}fprintf(stderr, "\n");



127}/* dupli
ate a string, terminate program if mallo
 error o

urs */
har *estrdup(
har *s){ 
har *t;/* would like to know if we 
aused the mallo
 error so 
all mallo
dire
tly... not emallo
() */++m
; /* in
rement mallo
 
alls 
ounter */t = (
har *) mallo
(strlen(s) + 1);if (t == NULL) {eprintf("estrdup(\"%.20s\") failed:", s);}str
py(t, s);return t;}/* 
all mallo
, terminate program if mallo
 error o

urs */void *emallo
(size_t n){ void *p;++m
; /* in
rement mallo
 
alls 
ounter */p = mallo
(n);if (p == NULL) {printf("mallo
 of %u bytes failed:", n);eprintf("tot # mallo
 
alls: %d", m
);}return p;}/* 
all 
allo
, terminate program if 
allo
 error o

urs */void *e
allo
(size_t n, size_t s){ void *p;++m
; /* in
rement mallo
 
alls 
ounter */p = 
allo
(n, s);if (p == NULL) {printf("
allo
 of %u bytes failed:", n);eprintf("tot # mallo
 
alls: %d", m
);}return p;}/* 
all reallo
, terminate program if reallo
 error o

urs */void *ereallo
(void *p, size_t s){ ++m
; /* in
rement mallo
 
alls 
ounter */p = reallo
(p, s);if (p == NULL) {printf("reallo
 of %u bytes failed:", s);eprintf("tot # mallo
 
alls: %d", m
);}return p;}/* remove '\n' from end of string if is there... like perl's 
homp */
har *
homp(
har *in){ int len = strlen(in);if (in[len - 1℄ == '\n') {in[len - 1℄ = '\0';}



128return (in);}/* 
ount the number of bases (A,C,G,T not X or N) in a DNA string */int 
ountBases(
har *in){ int i; /* 
ounter */int n = 0; /* number of bases */int len = strlen(in);for (i = 0; i < len; i++) {if ((in[i℄ == 'A') || (in[i℄ == 'C') || (in[i℄ == 'G')|| (in[i℄ == 'T')) {++n;}}return n;}/* raise base to the exp power */int ipower(int base, int exp){ int i, ret = 1;for (i = 0; i < exp; i++) {ret *= base;}return (ret);}/* reverse 
ompliment a DNA string, assume out big enough to store in */void revComp(
har *in, int len){ int j = 0, i;/* reverse the string */for (i = (len - 1); i > ((len - 1)) / 2; i--) {in[j℄ = in[i℄;j++;}/* 
ompliment the string */for (i = 0; i < len; i++) {if (in[i℄ == 'A')in[i℄ = 'T';else if (in[i℄ == 'T')in[i℄ = 'A';else if (in[i℄ == 'C')in[i℄ = 'G';else if (in[i℄ == 'G')in[i℄ = 'C';else if (in[i℄ == 'a')in[i℄ = 't';else if (in[i℄ == 't')in[i℄ = 'a';else if (in[i℄ == '
')in[i℄ = 'g';else if (in[i℄ == 'g')in[i℄ = '
';}}/* print ni
ely the differen
e between two times */
har *printTime(time_t startTime, time_t stopTime){ int elapsedTime;int elapsedDays;



129int elapsedHrs;int elapsedMins;int elapsedSe
s;
har *out;elapsedTime = (int) difftime(stopTime, startTime);if (elapsedTime >= 86400) {elapsedDays = elapsedTime / 86400;elapsedTime = elapsedTime % 86400;} else {elapsedDays = 0;}if (elapsedTime >= 3600) {elapsedHrs = elapsedTime / 3600;elapsedTime = elapsedTime % 3600;} else {elapsedHrs = 0;}if (elapsedTime >= 60) {elapsedMins = elapsedTime / 60;elapsedTime = elapsedTime % 60;} else {elapsedMins = 0;}elapsedSe
s = elapsedTime;/* 
hange this so 1000 not hard 
oded - opps */out = (
har *) emallo
(1000 * sizeof(
har));sprintf(out, "%d days, %d hours, %d mins, %d se
s",elapsedDays, elapsedHrs, elapsedMins, elapsedSe
s);return (out);} A.2.10 bl2seq.
/***************************************************************************bl2seq.
 - runs bl2seq on two sequen
es-----------------------------------------begin : Sun Mar 18 2001author : Kevin Pedrettiemail : pedretti�eng.uiowa.edu***************************************************************************/#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <unistd.h>#in
lude <string.h>#in
lude <errno.h>#in
lude "utils.h"#in
lude "bl2seq.h"void bl2seq(
har *seq1, int seq1Len, 
har *seq2, int seq2Len,bl2seq_hit * hits, int *nHits){ FILE *SEQ1;FILE *SEQ2;FILE *OUT;int i;int n = 0;
har *p;/* open temporary files to store sequen
es to bl2seq */SEQ1 = fopen("/tmp/seq1.fasta", "w+");SEQ2 = fopen("/tmp/seq2.fasta", "w+");



130if (SEQ1 == NULL || SEQ2 == NULL) {eprintf("
an't open files for bl2seq\n");}/* bl2seq dis
ards X's so we must be sure to 
hange them *//* print seq1 to file, 
hanging X's to N's */fprintf(SEQ1, ">seq1\n");for (i = 0; i < seq1Len; i++) {if (seq1[i℄ != 'X') {fput
(seq1[i℄, SEQ1);} else {fput
('N', SEQ1);}}fprintf(SEQ1, "\n");f
lose(SEQ1);/* print seq2 to file, 
hanging X's to N's */fprintf(SEQ2, ">seq2\n");for (i = 0; i < seq2Len; i++) {if (seq2[i℄ != 'X')fput
(seq2[i℄, SEQ2);elsefput
('N', SEQ2);}fprintf(SEQ2, "\n");f
lose(SEQ2);/* 
all bl2seq on the two sequen
es */
all_bl2seq("/tmp/seq1.fasta", "/tmp/seq2.fasta", "/tmp/bl2seq.out");/* open the bl2seq output file */OUT = fopen("/tmp/bl2seq.out", "r");if (OUT == NULL) {eprintf("
an't open bl2seq output file");}/* parse the hits from the file. */*nHits = parse_hits(OUT, hits);f
lose(OUT);}int parse_hits(FILE * fd, bl2seq_hit * hits, int maxHits){ 
har inLine[BL2SEQ_MAXLINE℄;int state = STATE_INIT;int 
urHit = 0;int in;int isEnd;int nStarts, nLens, nStrands;int sb1, sb2, lastsb1, lastsb2;int lastlen;int laststrand1, laststrand2;while (fgets(inLine, BL2SEQ_MAXLINE, fd) != NULL) {if (state == STATE_INIT) {if (strstr(inLine, "starts {") != NULL) {state = STATE_STARTS;nStarts = 0;isEnd = 0;// printf("START HIT %d\n", 
urHit);// printf("STARTS = \n");}if (strstr(inLine, "lens {") != NULL) {state = STATE_LENS;



131nLens = 0;isEnd = 0;// printf("LENS = \n");}if (strstr(inLine, "strands {") != NULL) {state = STATE_STRANDS;nStrands = 0;isEnd = 0;// printf("STRANDS = \n");}} else {if (state != STATE_STRANDS) {/* parse a number from the input line */in = atoi(inLine);} else {/* parse the dire
tion from the input line */if (strstr(inLine, "plus")) {in = PLUS;} else {in = MINUS;} }/* determine if this is the last entry at the 
urrent state */if (strstr(inLine, "}") != NULL) {isEnd = 1;}if (state == STATE_STARTS) {if (nStarts == 0) {sb1 = in;} else if (nStarts == 1) {sb2 = in;}/* always store the last start pair */if ((nStarts % 2) == 0) {lastsb1 = in;} else {lastsb2 = in;}++nStarts;} else if (state == STATE_LENS) {lastlen = in;++nLens;} else if (state == STATE_STRANDS) {if ((nStrands % 2) == 0) {laststrand1 = in;} else {laststrand2 = in;}++nStrands;}if (isEnd == 1) {/* if STATE_STRANDS, we're at the end of a hit */if (state == STATE_STRANDS) {/* store the 
urrent hit */hits[
urHit℄.sb1 = sb1;hits[
urHit℄.eb1 = lastsb1 + lastlen - 1;hits[
urHit℄.sb2 = sb2;hits[
urHit℄.eb2 = lastsb2 + lastlen - 1;/* figure out the dir value to store */if ((laststrand1 == PLUS) && (laststrand2 == PLUS)) {hits[
urHit℄.dir = PP;



132} else if ((laststrand1 == PLUS) && (laststrand2 == MINUS)) {hits[
urHit℄.dir = PM;} else if ((laststrand1 == MINUS) && (laststrand2 == PLUS)) {hits[
urHit℄.dir = MP;} else if ((laststrand1 == MINUS) && (laststrand2 == MINUS)) {hits[
urHit℄.dir = MM;}++
urHit;}state = STATE_INIT;}}}return 
urHit;}/* environ defined in unistd.h */extern 
har **environ;/* simple wrapper fun
tion to 
all bl2seq.* seq1 and seq2 are the two input file names.* out is the output filename to use.*/int 
all_bl2seq(
har *seq1, 
har *seq2, 
har *out){ int pid, status;if (seq1 == NULL || seq2 == NULL) {return 1;}pid = fork();if (pid == -1) {return -1;}/* setup the arguments to pass to bl2seq */if (pid == 0) {
har *argv[13℄;argv[0℄ = "bl2seq";argv[1℄ = "-i";argv[2℄ = seq1;argv[3℄ = "-j";argv[4℄ = seq2;argv[5℄ = "-p";argv[6℄ = "blastn";argv[7℄ = "-o";argv[8℄ = "/dev/null";argv[9℄ = "-a";argv[10℄ = out;argv[11℄ = "-FF";argv[12℄ = 0;exe
ve("/mnt/r0-blastdb/blast-bin/bl2seq", argv, environ);exit(127);}/* try until for 
hild, retrying if we're interrupted */do {if (waitpid(pid, &status, 0) == -1) {if (errno != EINTR) {return -1;}} else {return status;}} while (1);}
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